Innovating Gas-Lift for Life of Well Artificial Lift Solution

"The Unconventional Solution!"

Glenn Wilde

Optimum Production Technologies Inc. Revive Energy Corp.

Unconventional Facility & Artificial Lift Design

Re-circulative Gas Lift Benefits

- No down hole equipment other than tubing
 - Eliminates all down hole maintenance
 - Accommodates low cost cleanout

Re-circulative Gas Lift Benefits

- No down hole equipment other than tubing
 - Eliminates all down hole maintenance
 - Accommodates low cost cleanout
- 2. Accommodates all fluids – Liquids, Solids, High GOR

Re-circulative Gas Lift Benefits

- No down hole equipment other than tubing
 - Eliminates all down hole maintenance
 - Accommodates low cost cleanout
- 2. Accommodates all fluids – Liquids, Solids, High GOR
- 3. Provides deep depletion

1. Free Flowing well as long as possible!

- 1. Free Flowing well as long as possible!
- Install compression

How Does Compression Impact The Critical Rate To Lift Liquids

3 1/2" Tubing 12000ft Vertical well

3 1/2" Tubing 12000ft Vertical well

How Does Compression Impact The Bottom Hole Flowing Pressure

3 1/2" Tubing 12000ft Vertical well

3 1/2" Tubing 12000ft Vertical well

150 HP - 800 Psi Discharge

- 1. Free Flowing well as long as possible!
- Install compression

- 1. Free Flowing well as long as possible!
 - Install compression
 - Install Tubing

1. Design Tubing for optimum depletion

- 1. Design Tubing for optimum depletion
 - The larger the better!

- 1. Design Tubing for optimum depletion
 - The larger the better!
 - Install friction reducing coatings

- 1. Design Tubing for optimum depletion
 - The larger the better!
 - Install friction reducing coatings
 - Eliminate upsets to reduce turbulence

- 1. Design Tubing for optimum depletion
 - The larger the better!
 - Install friction reducing coatings
 - Eliminate upsets to reduce turbulence
- 2. Install Surface Flow control valve to allow annular production

- 1. Design Tubing for optimum depletion
 - The larger the better!
 - Install friction reducing coatings
 - Eliminate upsets to reduce turbulence
- 2. Install Surface Flow control valve to allow annular production
- 3. Eliminate all downhole equipment!

The Difficulties of Well Startup

Break Circulation With Minimal HP

- 1. Design Tubing for optimum depletion
 - The larger the better!
 - Install friction reducing coatings
 - Eliminate upsets to reduce turbulence
- 2. Install Surface Flow control valve to allow annular production
- 3. Eliminate all downhole equipment!
- 4. If necessary provide capability to store gas in the wellbore

Concentric Tubing Gas Storage

Parallel Tubing Gas Storage

An Unconventional Artificial Lift Solution For Liquids Rich Gas?

- 1. Free Flowing well as long as possible!
 - Install compression
 - Install Tubing

An Unconventional Artificial Lift Solution For Liquids Rich Gas?

- 1. Free Flowing well as long as possible!
- Install compression
- Install Tubing

2. Installation of re-circulative Gas lift system.

1. Re-Circulative Gas Lift Control System

- 1. Re-Circulative Gas Lift Control System
 - Well site intelligence

- 1. Re-Circulative Gas Lift Control System
 - Well site intelligence
 - Real time Critical rate determination

- 1. Re-Circulative Gas Lift Control System
 - Well site intelligence
 - Real time Critical rate determination
 - Real time production optimization

- 1. Re-Circulative Gas Lift Control System
 - Well site intelligence
 - Real time Critical rate determination
 - Real time production optimization
- 2. Low Maintenance control valve design

- 1. Re-Circulative Gas Lift Control System
 - Well site intelligence
 - Real time Critical rate determination
 - Real time production optimization
- 2. Low Maintenance control valve design
- 3. Blanketed Blow Case providing safe depletion into a deep vacuum.

Gas Flow Path

3rd Generation PROTOTYPE

Gas Lift Case Study

Gas Lift Case Study

• Vertical Gas Well

Gas Lift Case Study

- Vertical Gas Well
- Perforations 1799m 1819m

- Vertical Gas Well
- Perforations 1799m 1819m
- 3 ½" tubing landed @ 1800 m

- Vertical Gas Well
- Perforations 1799m 1819m
- 3 ¹/₂" tubing landed @ 1800 m
- Gas relative density 0.8

- Vertical Gas Well
- Perforations 1799m 1819m
- 3 ¹/₂" tubing landed @ 1800 m
- Gas relative density 0.8
- Condensate Gravity 54 deg API

- Vertical Gas Well
- Perforations 1799m 1819m
- 3 ¹/₂" tubing landed @ 1800 m
- Gas relative density 0.8
- Condensate Gravity 54 deg API
- Cum Gas 14.6 BCF

- Vertical Gas Well
- Perforations 1799m 1819m
- 3 ¹/₂" tubing landed @ 1800 m
- Gas relative density 0.8
- Condensate Gravity 54 deg API
- Cum Gas 14.6 BCF
- Reservoir pressure 100 psi

Pool Cumulative Gas

Pre Gas Lift Production Rates

Log Calander Dav Rate vs Time

Log Calander Dav Rate vs Time

Log Calander Dav Rate vs Time

Predicted

Predicted

– Hagedorn Brown

310 mcf/d

- Predicted
 - Hagedorn Brown
 - Beggs & Brill

310 mcf/d 466 mcf/d

- Predicted
 - Hagedorn Brown
 - Beggs & Brill

310 mcf/d 466 mcf/d

Actual

350 mcf/d

Predicted

Predicted

– Hagedorn Brown

93 kPa

- Predicted
 - Hagedorn Brown
 - Beggs & Brill

93 kPa 241 kPa

- Predicted
 - Hagedorn Brown
 - Beggs & Brill

93 kPa 241 kPa

Actual

320 Kpa

Questions....

