Developments in friction stir & spot welding: tailored blanks & Al/Steel joining techniques

Global Automotive Lightweight Materials 2015

François Nadeau ing., M.Sc. NRC-Saguenay April 14th 2015

National Research Council Canada

Who's NRC ?

Corrosion

Outline

- Interesting lighweighting possibility (body-in-white & structural parts)
- Goal: Increase productivity without decreasing formability

Friction stir welding

Mercedes SL

Autogenous laser welding

- **High productivity**
- Hard to control geometrical defects
- Hot cracking sensitivity

Thickness ratio	Approximate weight savings (part)	
1.5 : 1	≈ 15 %	
2 : 1	≈ 30 %	

Automobile et transport de surface / **Automotive and Surface Transportation**

LDH

Hot forming issues with FSW of tailor welded blanks...

• Automotive trend toward dissimilar material joining (average body & closures)

- Current fusion welding processes need improvement
 - Metallurgical incompatibility (fragile intermetallics)
- Solid-state joining processes (FSW) are attractive in this regard

Friction stir welding (AI / Steel)

- FSW pin tool enters slightly into substrate
- Wear-resistant tool material (potential wear)

Honda

Assisted FSW (NRC)

- > FSW pin tool <u>do not enter</u> into substrate
- Typical tool materials for AI / AI FSW

Passed 90° bend

Aluminum sheet Shoulder & pin Joint resistance **Forge force** Load / weld length¹ thickness diameters kΝ N/mm mm mm 316.5 +/- 14.1 ≈ 1.0 - 2.0 11.0/4.0 9.75 ≈ 3.0 14.0 / 5.0 12.00 431.2 +/- 51.8

¹Joint failure at interface

Aluminum alloy	Tensile strength	Maximum thickness for failure in base material (11mm shoulder tool)
	МРа	mm
6016-T4	220	1.44
5754-O	230	1.38
5182-O	275	1.15
6070-T4	320	0.99
7075-T6	550	0.58

Conventionnal FSW (AI / Steel)

Joint performance

Single lap-shear test

38 mm

overlap

Increased interface length yields higher joint resistance

(≈ 80% joint efficiency vs FSW Al/Al)

Conventionnal FSW (AI / Steel)

Environmental durability performance

Static mechanical properties not clearly affected in durability testing

GM9505P Cycle G (30 cycles)

- 2 hours @ -30°C
- 2 hours @ room temperature
- 2 hours @ 70°C
- 2 hours in environmental chamber
 - > 2 hours in salt spray
 - > 16 hours in high humidity

¹Joint failure at interface

²Joint failure in base material (2.0mm thick)

Automobile et transport de surface / Automotive and Surface Transportation

Single lap-shear test

- AI / AI hybrid joining > FSW
- + 65% joint strength in hybrid joining (untreated AI) vs FSW

Up to + 105% joint strength in hybrid joining (brushed AI) vs FSW

250

200

150

100

50

0

No gap

Stress in Substrate (Mpa)

AI / AI hybrid joining > GMAW (MIG)

+ 50% joint strength in hybrid joining VS **GMAW** or adhesive

No major gain using a silane surface treatment

Adhesive application on untreated surface gives unpredictable results

*GPS: silane surface treatment

AI / AI hybrid joining FSW (environmental durability performance)

Still + 50% joint strength in hybrid joining in environmental durability testing

Cataplsama degradation (Jaguar JNS) 30.03.35 standard) > UV (5 weeks; wet & dry) (ISO 11507: alternative exposure of 4 h UV at 60 °C and 4 h condensation (100% RH) at 50 °C for 5 weeks (35 days)) > Chamber 5 weeks (wet & dry conditions; replica of ISO 11507 without UV) > UV (1 week, dry conditions) (ASTM D-904: 24 h UV for 7 days at 60 °C; in other words 168 h of UV exposure at 60 °C) Chamber 1 week (dry conditions; replica) of ASTM D-904 without UV) Cyclic corrosion (ISO 14993)

AI / Steel hybrid joining (FSW) > Joint performance

				. 16.
Tierce material	Shoulder diameter	Forge force	Joint resistance Load / weld length	G I I I I I I I I I I I I I I I I I I I
	mm	kN	N / mm	
Conventionnal FSW	14.0	12.0	431.2 +/- 51.8 ¹	
Assisted FSW	11.0	5.00	234.8 +/- 5.6 ¹	No joint strength increases using
	18.0	13.5	338.0 +/- 7.6 ¹	hybrid joining in
Hybrid-conventionnal FSW	14.0	12.0	415.9 +/- 38.7 ¹	conventionnal FSW
Hybrid-assisted FSW	11.0	5.00	400.3 +/- 14.8 ²	1.01

¹Joint failure at interface

²Joint failure in base material (2.0mm thick)

Tierce material acts as a pre-treatment to adhesive bonding

Increase in fatigue strength vs conventionnal FSW

Automobile et transport de surface / Automotive and Surface Transportation

Single lap-shear test

FSSW: techniques & joint performance

Joining processes

Automobile et transport de surface / Automotive and Surface Transportation

Typical applications

Henrob

FSSW: techniques & joint performance

FSSW: techniques & joint performance

Industrialization of NRC robotic FSW technologies > 1st production-level robotic FSW workcell in Canada (in progress)

Fully-integrated industrial solution Image: Solution Council Canada Industria Council Canada Industria Council Canada Industria Council Canada In-house hybrid force control (RSI) Nanagement of FSW spindle (ProfiBus) Process supervision module </

RSI-based (KRC2 12ms) real-time control features:

- · Hybrid position/force control module
- Control of tool plunge + transient regime

FSW tools - parameters

- National Research Conseil national Council Canada de recherches Canada
- Design of production tools (HSK)
- Specialized tool geometry with > 1000 m life (Tungsten Carbide)
- Optimized process parameters for each range of plate thicknesses (4 tools)

Accuracy management

- National Research Conseil national Council Canada de recherches Canada
- Automated calibration for robots working under high process loads
- Real-time corrections of tool deviations due to process loads (forge force > 8 kN)
- · Real-time corrections of orientation errors
- (hydraulic)Integrated cooling in backing

· Automated positioning of Aluminium

Automated horizontal & vertical clamping

Automated FSW fixture

Council Canada

· Top loading of plates

plates (pneumatic)

National Research

Conseil national

de recherches Canada

Robotic friction stir welding: Control challenges

Elastodynamic behavior of serial robots

- FSW tool deviations (axial + transverse joint deformations, backlash, ...)
- Automation problem at tool plunge-in
- Vibrations due to robot dynamics (rpm<1000)

Robotization issues & seam defects

Al 2024-T3 (2x2,3mm) Lap joint, 750rpm (robot natural frequency)

Automobile et transport de surface / Automotive and Surface Transportation

 Technology package for accurate path generation using rail-mounted robots under load (TRL-8)

NRC calibration kit & method

- > Model for axial+structural behavior
- Solution for improved measurement of lateral forces for COTS spindles
- Fully automated robot calibration in production-relevant envelope (PCT patent pending)
- Fully automated parameter estimation

Initial situation:

Lateral deviations in seam plane + loss of angularity caused by heavy process loads

NRC 3D real-time path correction technology

- Real-time compensation of deviations in welding plane
- Compensation of force-induced loss of angularity

Standard kinematic calibration

- > Calibration of robot path generation errors
 - in free motion (e.g.: KUKA Absolute Accuracy)
- > Local robot/tooling calibration

accuracy performance

Performance evaluation on NRC robotic FSW test-bed

Real-time compensation of lateral/angular deviations along 3D convex-concave profile — Forward path

Process forces: Fx = 1,2 kN, Fy = 1,1 kN, Fz = 10 kN Hybrid position/force control

Performance evaluation on NRC robotic FSW test-bed

Real-time compensation of lateral/angular deviations along 3D convex-concave profile — Return path

Process forces: Fx = 1,2 kN, Fy = 1,1 kN, Fz = 10 kN Hybrid position/force control

Questions?

François Nadeau ing., M.Sc. Tel: 1-418-545-5287 Francois.Nadeau@cnrc-nrc.gc.ca www.cnrc-nrc.gc.ca

Conseil national de recherches Canada

National Research Council Canada

