

ALUMINUM EXTRUSION ALLOY DEVELOPMENT FOR AUTOMOTIVE APPLICATIONS

DAVID LUKASAK AUGUST 20, 2015

BACKGROUND

Driving force for lightweighting

- Economical, environmental and political pressure:
- Reduce fuel consumption and CO2-emissions

Source: www.theicct.org

China's target reflects gasoline fleet scenario. If including other fuel types, the target will be lower.
 US and Canada light-duty vehicles include light-commercial vehicles.

Mild steel will be replaced by a mix of materials, including:

- Aluminum
- High strength steel
- Fibre-reinforced-plastics

Aluminum has the highest weight saving potential

focus points for aluminum extrusions in mass reduction strategies

Create the Safest and Most Cost-Effective Design

ENERGY ABSORPTION APPLICATIONS

Which profile would you like to have in your car?

Lightweighting across the full range

FULL RANGE

Full Range - Lightweighting as intended

Optimization for production and performance

Optimized Billet Microstructure

EXTRUSION

Focus on crash properties

What physical property is important for aluminum energy absorption in a crash?

- Elongation/Ductility
- Strength
- Other property?

Alloy comparison – same strength and elongation

Rp0.2 / Rm / A5 / crush grade ~ 290 / 306 / 13-14 / 9 (alloy A), 3 (alloy B)

Alloy comparison – same strength and elongation

Rp0.2 / Rm / A5 / crush grade ~ 290 / 306 / 13-14 / 9 (alloy A), 3 (alloy B)

MECHANICAL PROPERTIES

3 different grades are defined

Class (Alloy)	R _{р0.2} (МРа)	R _m (MPa)	A ₅ (%)
A (CA20)	200 - 240	≥220	≥11
B (CA24)	241 - 280	≥260	≥10
C (CA28)	281 - 330	≥305	≥10

Standardized tests for crash performance

3-POINT BEND TEST

sapa:

QUASISTATIC COMPRESSION

- Material and component test
- Quantitative force energy absorption
- Subjective crash grading
- Peak and average force

DYNAMIC COMPRESSION

Material and component test, expensive and complicated

sapa:

Properties for 6xxx-alloys can be considered to be independent of strain rate

Dynamic testing and quasistatic testing should give the same results

Y. Chen, A.H. Clausen, O.S. Hopperstad and M. Langseth: *Stress-strain behavior of aluminum alloys at a wide range of strain rates. Int. J. of* Solids and Structures, Vol 46, pp. 3825-3835 (2009).

....which is our experience as well

Dynamic

Quasistatic

Focus on strength critical performance

6XXX Alloy Development – High Strength Alloys

• Sapa has developed higher strength alloys that are available

Alloy	Standard Tempers	Tensile Strength	Yield Strength	Elongation ³ (min.)
6061 AA	T6/T6511	260 MPa	240 MPa	8%
6082 AA	T6/T6511	310 MPa	260 MPa	6%
Sapa HS6X	T6/T6511	337 MPa	320 MPa	8%
Sapa 6082 (RX82)	T6/T6511	310 MPa	290 MPa	8%
Sapa 6061*	T6/T6511	285 MPa	275 MPa	8%
Sapa 340**	T6/T6511	360 MPa	340 MPa	10%

* High ductility – 3mm bend radius no cracking (~4mm max thickness)
** Under development – tentative target minimums

7XXX Alloy Development – High Strength

• New alloy developed with 370 MPa minimum yield.

Alloy	Standard Tempers	Tensile Strength	Yield Strength	Elongation ³ (min.)
Sapa 7003	Т5	375 MPa	345 MPa	10%
Sapa 7046A	T7*	410 Mpa**	370 MPa	10%
Kobe Z35B	Τ5	350 MPa	285 MPa	10%
Kobe Z6W	Τ5	410 MPa	390 MPa	10%

* Enhanced SCC Resistance ** Tentative minimum

- Sapa continued development
 - 450 MPa yield strength
 - Demonstrated capability in trial
 - SCC testing in progress

7XXX Elevated Temperature Effect Aging kinetics of 7XXX are fast compared to 6XXX alloys

Significant loss of strength for short exposure times at elevated temperatures >165 C

Higher temperatures will have a bigger effect on the strength

PROS

- Best opportunity for yield strengths above 350 Mpa
- Not quench sensitive (to a point) and improved dimensional capability.

sapa:

7XXX ALLOYS

CONS

- Much more difficult to extrude
- Cost higher
 - Extrusion productivity
 - Die costs increased (shorter life span)
 - Alloy cost increased
- Scrap segregation requirements
 - Impact on recyclability (Europe doesn't use in BIW for this reason)
- Paint bake cycle effects on strength
- Long aging cycles

Recycling for sustainability

- Energy consumption for producing 1000kg prime aluminum is 30 000 kWh
- Recycling only requires 5% of the energy input
- Scrap segregation is very important
- Keep to one alloy series...
- •...or make sure separation is possible
- 7XXX alloys in particular have the potential to have the biggest negative effect on recycling efforts.

Joint development for optimal solutions

Joint development with Sapa at an early stage in terms of...

- Alloy choice
- Profile design
- Avoiding dimensional restrictions
- Process routes

IS THE KEY TO SUCCESS AND OPTIMAL EXTRUSION SOLUTIONS!

Partner with Sapa for a lighter and stronger future!

DAVID A. LUKASAK

Director of Metallurgy

SAPA EXTRUSIONS NORTH AMERICA 53 Pottsville Street Cressona, PA 17929

Office Phone: 570-385-8566 Dave.Lukasak@sapagroup.com