

EXPLORATION DRIVEN

DELIVERY FOCUSED

Production Chemicals Optimization Congress

Implementing a Metric-Driven Chemical Management Program

Presented by:

Dr. Huz Ismail, Production Chemistry and Integrity Management Leslie Malone, Senior Staff Engineer

July 29th, 2015

Agenda

- Challenge
- Chemicals
 - H₂S
 - Paraffin
 - Biocide
 - Corrosion
 - SI
- Practical Application

Murphy Oil-Eagle Ford Operations

- Over 150,000 acres
- 600 + producing oil wells
- H₂S: Range 0 to 7%
- CO₂: 0 to 10%
- Geographically dispersed in the Eagle Ford
- 430 beam pumps operating
- Eagle Ford Head office, Houston, TX

Global Energy Demand

Hydrocarbon still dominate in 2030 and beyond

IEA - World Energy Outlook Special Report 2015: Energy and Climate
 Change - June 2015

Peak Oil

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline

<u>Adam R. Brandt</u> †*, <u>Adam Millard-Ball</u> ‡, <u>Matthew Ganser</u> †, and <u>Steven M. Gorelick</u> §

Department of Energy Resources Engineering, Stanford University, Stanford California 94305, United States

US Unconventional Plays

EIA – 2014 Report

Conventional

Database

II				
ProductionDate	Oilproduction	WaterProd	Gas_Produ	FlareVent
2/15/2014 12:00:00 AM	179.69	0.00	166.67	153.051
2/16/2014 12:00:00 AM	227.01	0.00	213.24	197.253
2/17/2014 12:00:00 AM	226.64	0.00	222.43	205.592
2/18/2014 12:00:00 AM	241.56	0.00	209.25	193.154
2/19/2014 12:00:00 AM	263.69	16.15	219.35	204.888
2/20/2014 12:00:00 AM	244.73	21.64	226.95	211.074
2/21/2014 12:00:00 AM	240.44	8.89	238.41	219.559
2/22/2014 12:00:00 AM	239.01	5.00	222.22	205.809
2/23/2014 12:00:00 AM	281.56	4.30	222.95	207.733
2/24/2014 12:00:00 AM	265.23	0.00	224.77	209.51
2/25/2014 12:00:00 AM	245.64	0.00	216.44	200.393
2/26/2014 12:00:00 AM	212.85	0.00	255.51	240.06
2/27/2014 12:00:00 AM	214.44	0.00	255.73	240.445
2/28/2014 12:00:00 AM	240.04	0.00	258.89	243.288
3/1/2014 12:00:00 AM	238.05	0.00	269.26	254.591
3/2/2014 12:00:00 AM	205.34	28.89	250.48	233.646
3/3/2014 12:00:00 AM	213.03	0.00	191.34	177.246
3/4/2014 12:00:00 AM	195.99	0.00	67.50	62.8838
3/5/2014 12:00:00 AM	205.76	7.31	146.76	135.591
3/6/2014 12:00:00 AM	201.52	16.88	182.81	168.967
3/7/2014 12:00:00 AM	208.56	118.74	185.99	171.98
3/8/2014 12:00:00 AM	201.51	18.60	178.50	164.702
3/9/2014 12:00:00 AM	207.99	11.15	182.47	168.854
3/10/2014 12:00:00 AM	216.60	12.52	190.28	176.564
3/11/2014 12:00:00 AM	223.40	14.54	169.26	156.276
3/12/2014 12:00:00 AM	174.87	6.51	197.39	184.854
3/13/2014 12:00:00 AM	165.58	0.00	174.49	163.78
3/14/2014 12:00:00 AM	184.33	16.92	199.17	185.376
3/15/2014 12:00:00 AM	201.41	0.00	200.40	187.385

Several H₂S Database

- Operations
- Field Service Reports from Chemical Service Provider
- Meters

Integration

Best Practices - Database

- Drilling
 - Toe up, toe down...
- Completions
 - Frac Water Chemistry, well spacing, guar, proppant...
- Productions
 - Oil, Gas, Water Rate, T, P...
 - Water Quality: TSS, TDS, pH, Dissolved Oxygen
 - Water Chemistry: Na, Mg, Ca, Ba, Sr, Fe, HCO₃, SO₄...
 - Oil Assay: API, Wax,
 %Asphaltene, Naphthanate
 - Production Chemistry
- Operational Data
 - Shut-down, turn around, Pigging...

- PDF
- Locked Excel
- Standardize Report formats
- Develop a **Strategy** for monitoring
- KPI

H₂S

Data Visualization

Geographic H2S Profile

Facilities Review

Direct Injection – Water Soluble Scavenger

H₂S Scavenger Performance & Economics

MEA triazine scavenger

H₂S Scavenger – Flow Assurance

_		Chemical rate (GPD)	
100	500	23	11
10000	500	2347	1100

Conclusions – H₂S

- Triazine is still the most economical option for sub-50 lbs H₂S application
- Oil Soluble poor efficiencies
- Centralized treatment best strategy
- Solid Tower not the best option due to CAPEX

Treatment Technology*	Cases	Expectation (\$/Ibs of H ₂ S)	Actual (\$/Ibs of H ₂ S)	
			Low	High
Direct Injection	50	\$18	\$ 31	\$ 202**
Liquid Tower	8	\$13	\$ 15	\$ 21
Solid Media Tower	4	\$ 6	\$ 20	\$ 41

^{*}CAPEX + OPEX – 3 year payout

^{**}when managed by service provider

Paraffin

Paraffin Inhibitor

Wax Dispersants

N-Alkane Crystal Formation

Crystal Distortion

Wax crystal agglomerate

Advantages over conventional paraffin inhibitors:

- Lower dosages required
- Can be applied below the Wax Appearance Temperature

Solvents

- Xylene
- Diesel
- Kerosene
- Tolune
- Naphtha

HTGC

Conclusions from the Model

- Dispersant should the best results
- Solvent also provide good results but high dosage made it uneconomical
- Crystal Modifier shows poor results

Artificial Lift Production Equals Flowing Production

Practical Applications

Chemical Pumps

- Fit for purpose
- Maintenance
- Injection Rate

Practical Applications

Cap Strings

- Installed at 5000 '
- Connected
- Plugged
- Failures

Practical Applications

Hot Water - Batch Treatments

- Management
- Tracking
- KPI's

Practical Application

Automation

- VSD to automate injection rate
- Adjust rate based on production
- Shut off chemical automatically when well is down

Questions

