Tank Vapor Recovery Safety in Design

Facilities Design Onshore Forum - September 17, 2015

Minhaal Kalyan – Facilities Engineer at Chevron

Overview

- Assess Common Tank Failure Mechanisms
- Review Best Practices in Design of VRU Systems
 - Piping Considerations
 - System Design Considerations
 - Operation of the Stack Valve
- Make Gas Concerns
 - Make up or Make Worse!!!
- Suction Design Best Practices
- Compressor Design for VRU Service

Safety Considerations Tank Failure Modes

- Corrosion Roof and Floor
- Collapse Vacuum
- Hydraulic Failure Closed System Overflow
- BLEVE Boiling Liquid Expanding Vapor Explosion
- Over-pressure Frangible Joint vs. External Rafters

Tank Corrosion

Roof Corrosion

Floor Under Deposit Corrosion

Solution - Seal tank.

- Operate TVRU system at positive pressure.
- Avoid installing TVRU Drain Tanks

Solution – Inspect, Prep, and Coat floor and shell three feet up from the tank bottom

Tank Vacuum Collapse

Simultaneous Operations

Painters on Roof Hydrotest Crew on Ground

Solution - Communicate

Tank Hydraulic Rupture Closed Overflow System

Tank Boiling Liquid Expanding Vapor Explosion (BLEVE)

Steam Heater TCV fails open or Coil Ruptures

Solution:

- Steam Shutdown Valve (fail close) on inlet to tank coils or thermo panes
- High temperature shutdown monitoring temperature located high in water phase, not oil emulsion

Tank Over-pressure

Frangible Roof Joint

Shell to Roof Failure

External Rafters

Shell to Floor Failure

Typical VRU Design in an OCP

Vapor Recovery System Key Considerations

VRU System Should be Plant Specific

- One Size does not "fit All"
- Prioritize Recommendations based on
 - Tank Permit Requirements
 - Location of Flare or Export Gas System
 - Toxic Gas Release Mitigation Ultrafab/Sulfatreat
 - Resources, Cost and Schedule
- Provide Training Pertaining to the Proper Design and Operation
 - Only as Good as the Operators
- Majority of VRU related deficiencies are the result of Poor Design

VRU Piping Design Best Practices

- Design Piping to Minimize Pressure Drop
 - Max Pressure Drop from Furthest or Largest Producing Gas Source should be <= 0.5" W.C at twice the maximum flow.
- Construct system piping from 316L stainless steel thin wall schedule 10 piping,
 - Large diameter 316L sch 10 is light weight with large section modulus allowing for 50 ft pipe support spans with minimal deflection/pocketing.
 - No need to design pipe support spacing for hydrotest loads, instead use low pressure (30 psig) service test with nitrogen and soap bubble test.
 - Concerns With Using Carbon Steel Piping
 - Oxygen can form Iron Oxide Scale
 - Hydrogen sulfide can form Iron Sulfide Scale
 - Carbon Dioxide and Water can cause pitting corrosion.

VRU Stack Valve Design

Stack valve should be centrally located

2

1

0

Q1

T1

This will allow venting at one safe location that can be controlled and measured for reporting purposes.

Stack Valve should be a tight shut-off high performance butterfly Valve

Time

- PVSV sealing surfaces do not seal tight after relieving which is the purpose of having a Valve upstream of the Varec.
- Stack Valve opens under the following conditions:

T2 Q2

- VRU Shutdown and/or pressure reaches 3.0" w.c.
- VRU Discharge pressure is high due to no VRU gas outlet
- Oxygen content in VRU gas is at 10% of the HEL
- Stack Valve assists operations with recording of deviation

VRU System Design Best Practices

Piping should be sized to limit pressure drop to 0.5" w.c. between compressor suction and all equipment connections, at a minimum of two times nominal flow

	in W.C	psig
Tank Design Pressure	3.5	0.13
Stack Valve Relief Pressure	3.0	0.11
VRU Suction Pressure	2.0	0.07
VRU Recycle Valve Pressure	1.0	0.04
VRU Make Up Gas Valve Pressure	0.5	0.02
Tank Design Vacuum Valve	-0.8	-0.03

Gas rate fluctuations from field due to POP's and terrain induced slugging, day-to-night and seasonal temperature changes must be considered in the design.

*Note: Compressor Capacity Control, Recycle Valve, and Make-up Gas are all trying to control pressure at their set-points based on a **single pressure transmitter** located at the furthest tank and/or the largest gas source.

VRU Make-up Gas Considerations

- Make-up Gas helps to maintain positive pressure on tanks when the tank liquid level drops.
- Assuming that the piping system is sized properly, produced gas from one tank can serve as make-up gas to another tank.
- Make-up Gas competes with Produced Gas for capacity in the VRU piping system and Compressor.
- Make-up Gas is only required at the inlet of the VRU compressor suction scrubber

VRU Typical Suction Design Deficiencies

TVRU Compressor Design Recommendations

VRU compressors Not Ideal

- Sliding vane, liquid ring, and Reciprocating are
- Limited to a single stage compression ratio of 3.0 (30 psig discharge pressure) due to heat of compression
- Compressor will shutdown on high discharge temperature.
- More Staged Will Require Larger Foot print.

VRU Compressor Recommended

> Oil-flooded Rotary Screw Compressor

Single stage compression ratio of 8.0 (100 psig discharge pressure) due to the heat of compression being absorbed in the oil.

Minimized Leaks – Less Moving Parts

Liquid Flooded – Can Tolerate some Liquid Carry over.

Other Considerations

- Consideration must be given to downstream pressure drops on equipment such as coolers, sulfa-scrub columns, sulfa-treat columns, iron sulfide blockage, and the final pressure at the destination such as steam generators, casing gas collection system, disposal wells, or flare.
- Ensure more than one destination for VRU discharge gas such as steam generator, disposal well, flare, etc.

Key Considerations for VRU System

- Pipe sizing and materials
- Large piping support spans with minimal deflection
- No pocketing of piping
- Stack valve centrally located to mitigate tank Varec re-seating leaks
- Eliminate sources of Oxygen to VRU (ie: Flotation Cells and Drain Tanks)
- Oxygen sensor to mitigate corrosion and address higher explosion limit
- Pressure transmitter located on furthest and/or largest gas source
- Make-up gas at inlet of compressor
- Cooling with cold potable water atomizer
- Scrubber Condensate pump with level control valve
- Large diaphragm seals and welded capillaries
- Oil-flooded rotary screw compressor— high compression ratio
- More than one destination for TVRU gas

Questions or Comments?