

New Developments for Mass Production of Epoxy Automotive Composites

Presented by Cedric Ball Business Development Manager – Automotive Hexion Inc. GALM Detroit 2016

Hexion is a specialty chemicals company with a leading position in the development and production of systems, products and services for the global energy, transportation and construction markets.

At a glance ...

Columbus, Ohio USA US\$5.2 billion 5000 Employees 60 Global Production & Technology Sites

Technology Platforms

Epoxy Phenolics Versatics™ Formaldehyde

Automotive Applications

Lightweight Composites Exterior Structural Suspension Under-the-hood Braking Coatings

Global Leadership Positions Across Our Range of Industries and Technologies

Products for Automotive Composite Applications

BAKELITE[®] Engineering Thermosets / Molding Compounds

- Water pump housings
- Vacuum pump housings
- Oil pump shaft, piston
- Variety of powertrain components

EPIKOTE[®] Resins and EPIKURE[®] Curing Agents

- Exterior panels
- Body structure
- Suspension components
- Driveshafts
- LPG, CNG and H₂ tanks

Auto Industry Imperative: Lightweighting to **K HEXION**[®] Meet Emission & Fuel Economy Regulations

Composite Materials Face Perception of **K HEXION**[®] Low Manufacturing Volumes and High Cost

Composite Technology Developments Have **K HEXION**[®] Enabled Mass Production of Automotive Parts

Composites: Offer highest weight reduction opportunities in automotive applications

Innovative Processing Technologies:

Enable mass production of automotive parts

Carbon Fibre Reinforced Plastics (CFRP) **HEXION**[®] Have the Highest Weight Reduction Potential

Part weight | % of steel 100 Steel **Typical Cost Build-Up** HSS 80 50% Material • 40 - 45% carbon fiber • 5 - 10% resin Plastics 80 **50% Processing** • Quicker curing matrix Aluminum 60 Process optimization Near-end-contoured preforms Automation Carbon fiber 50 20 40 60 80 100 \mathbf{O}

Sources: McKinsey Lightweight, heavy impact 2012, Roland-Berger, 2012

BMW 7-Series "Carbon Core" **X HEXION** Illustrates Body-in-White Mixed Material Use

BMW 7-Series SOP: 2015 Various CFRP Parts using Hexion resins e.g. roof arc and tunnel reinforcement

Benefits

- 40 kg weight reduction vs. steel in the Carbon Core body structure
- Fast curing cycle enabled by Hexion latest resin technology
- Multi material usage: engineered for performance

Source: BMW Group

Composite Technology Innovations Offer Cost-Efficient Lightweighting

Composites:

Offer highest weight reduction opportunities in automotive applications

Innovative processing technologies: Enable mass production of automotive parts

Epoxy CFRP with Resin Transfer Molding **K HEXION** (RTM) Technology for Structural Applications

Audi R8 Coupe and Lamborghini Huracan (MSS Platform) CFRP Transmission Tunnel ACE Advanced Composite Engineering GmbH EPIKOTE[™] Resin TRAC 06150/ EPIKURE[™] Curing Agent TRAC 06150

Benefits

- 30% lighter than aluminium
- Short cycle time production

of Highly Complex Structural Parts Lay-up binder stabilized fabric Fast handling Textile stability Heating and some pressure • Controlled permeability Thermal latency Low viscosity Mold closing and resin injection • Rapid fiber wetting Fast conversion Curing Isothermal Low exotherm Easy de-molding • Part quality **Opening and de-molding** Reproducibility

RTM Technology Enables Fast Production **X HEXION**

Epoxy Binders Address Preforming Challenges in Fast RTM

Benefits

- Faster handling / positioning of preform
- Controlled permeability and lay-up definition
- Textile stability at mold temperature during injection

Part Size and Equipment Determine the Material Processing Window

High Pressure RTM / LCM Process In-Production Examples

In-Production Examples 30 ◆ Structural parts ■ Exterior parts **BMW M Series** ▲ Suspension XBIW Curing time (minutes) **BMW** i-Series • 20 BMW 7 Series ۲ Porsche 911 GT3 CUP Porsche Boxter 10 Audi R8 Lamborghini Aventador minute automotive 0 industry target Volkswagen XL1 2000 2010 2015 2005 2020 Year (SOP)

https://youtu.be/qZrOxQ1V6bQ

•

Resin cure time is no longer a limiting factor for support of series production.

Epoxy CFRP with RTM & LCM Technology **X HEXION** for Structural Applications

BMW 7-Series CFRP Roof Arc EP TRAC 06000/ EK TRAC 06130 BMW 7-Series CFRP Tunnel Reinforcement EP TRAC 06000/ EK TRAC 06130

Benefits

- Designed to the shape of the car body
- Fast curing cycle with HP-RTM
- Outstanding weight / performance ratio

Benefits

- Local reinforcement enhances torsional stiffness
- Fast curing cycle with LCM

LCM: Preforming is Simplified and Direct **KHEXION** Liquid Resin Application Shortens Cycle Time

Liquid Compression Molding (LCM) is Increasing Attractive for Complex Parts

X HEXION°

Part-to-Part Cycle Time of <1 Minute **X HEXION**[®] Demonstrated w/ Liquid Compression Molding

Epoxy CFRP with Prepreg Technology (PCM) for Semi-Structural Applications

Forward Light Holders CMP GmbH - UBC GmbH EP TRAC 06425/ EK TRAC 06465

Mini Front Wings CMP GmbH - UBC GmbH EP TRAC 06425/ EK TRAC 06465

Performance Benefits

- Lightweight versus steel
- Short cycle time (90 sec or 3–5 min)
- High mechanical performance
- High Tg

Processing Benefits

- Long shelf life at room temperature
- Easy and versatile molding
- In house prepreg as viable approach to further reduce cost

High Mechanical Performance is Achieved **X HEXION** with Prepreg Technology

Impregnation	•	Low viscosityNo VOCNo preforming
Fiber or Prepreg Placement		 Easy fiber positioning Stable band width Good fiber wetting
Cutting & Molding		Low scrap rateHybrid reinforcementFunctionalization
Pressing	*	Short in-mold cycle timesControlled flowNet shape
Part de-molding		 Low shrinkage Mechanical performance Reproducibility

EPIKOTE[™] Resin Systems Have Benefits in SMC

Epoxy Benefits versus Vinyl Ester and Unsaturated Polyester Resins

- VOC and styrene free
- Inherently low shrinkage
- Better mechanical strength properties
- Good adhesion to glass and carbon fibre
- Compatible with other epoxy material technologies
- Higher Tg
- Higher fatigue / durability performance

Improved Cost Efficiency of SMC **X HEXION** Technology: Net Shape Molding without Preforming

Component Mixing		Low ViscosityNo VOC (styrene free)
SMC Compounding	000000	Good fibre wettingPotential use recycled fibreFast maturation
SMC Cutting & Molding		 Lower scrap rate Hybrid reinforcement Functionalization
Pressing		Short in mold cycle timesControlled flowNet shape
Part de-molding		 Low shrinkage High strength/modulus Reproducibility

Optimum CFRP Performance and Cost 📜 HEXION" ... depend upon <u>all</u> 3 factors: Design **Materials Epoxy Resins: Equipment Suppliers Liquid Resins Reinforcement & Preforming** Hot Melts Part Design and Modeling **Perform Binders** Optimum **Process Design and Simulation Mold Release Agents** Performance **Tool Construction Prototyping Systems** and Cost \$\$ **Phenolic ETS Compounds Process HP-RTM** LCM Compression Molding **Injection Molding** Prepreg Performing Towpreg SMC FiWi

Optimum CFRP Performance and Cost ... depend upon <u>all</u> 3 factors:

Epoxy Glass and Carbon Fibre Reinforced Composites: Highest weight saving potentials

New generation resin systems: Faster cure cycles, easier demolding and more process versatility

Comprehensive component design and development: Will continue to decrease the cost of weight saving

Composite Application Technologies

Duisburg, Germany

London, ON

South Hampton, UK

Cedric Ball Business Development Manager - Automotive cedric.ball@hexion.com

Thank You !

The information provided herein was believed by Hexion Inc. ("Hexion") to be accurate at the time of preparation or prepared from sources believed to be reliable, but it is the responsibility of the user to investigate and understand other pertinent sources of information, to comply with all laws and procedures applicable to the safe handling and use of the product and to determine the suitability of the product for its intended use. All products supplied by Hexion are subject to Hexion's terms and conditions of sale. HEXION MAKES NO WARRANTY, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE OR CONCERNING THE ACCURACY OF ANY INFORMATION PROVIDED BY HEXION, except that the product shall conform to Hexion's specifications. Nothing contained herein constitutes an offer for the sale of any product.

© 2016 Hexion Inc. All rights reserved.

 ${\ensuremath{\mathbb R}}$ and ${\ensuremath{^{\text{TM}}}}$ denote trademarks owned or licensed by Hexion Inc.

