United States Steel
Automotive Solutions to Light Weighting

Generation 3 Steels - A Guide to Applications of Gen3 AHSS

August 25, 2016

Michael Davenport
Director – Product Application Engineering
“The day of the passenger car made primarily of iron and steel is on the wane” giving ground to aluminum, magnesium and plastics.
“The day of the passenger car made primarily of iron and steel is on the wane” giving ground to aluminum, magnesium and plastics.
“The day of the passenger car made primarily of iron and steel is on the wane” giving ground to aluminum, magnesium and plastics.

1970s – Body-on-Frame
 Body-Frame-Integral

1980s – Uncoated
 Galvanized Rust Resistant

1990s – Mild Steel
 High Strength and Bake Hard Steel

2000s – Mild & High Strength
 GEN1 AHSS and PHS

Today – GEN3 Advanced High Strength Steels
What is Gen3?

- **Generation 1**
 - IF
 - IF-HS
 - Mild
 - ISO
 - BH
 - CMn
 - ISLA
 - DP, CP
 - MART

- **Generation 2**
 - L-IP
 - AUST. SS
 - TWIP

- **Generation 3 AHSS**

- **UTS x TE = 25000**

- **USS CR 1180 Gen 3 Target**
Data Needed to Turn Coils into Parts

- Microstructure Characterization
- Compatibility with paint system
- Gauge and width capability
- Mechanical Properties
- Bake hardening / Aging
- Fatigue
- Hole expansion ratio
- Safe

- True Minor Strain
- True Major Strain
- Plane Strain
- Forming Limit Curve
- FLD

- Spot Weld
- Dynamic Crush
- Dynamic Bending
- Hydrogen embrittlement
- Fracture toughness evaluation

- Introduction
- Gen3 Characterization
- Gen3 Guide
- Summary
Mechanical Properties – Formability and High Strength

66% Higher Strength

25% Shorter crush distance

980 Gen3 make 37% weight save and better crush performance possible
5% Higher formability with 980 Gen3

Uniform strain distribution with 980 Gen3

980 Gen3 has 5% higher formability and better strain distribution than DP590
Welding 980Gen3 steels can be achieved with a wide range of welding parameters and uniform hardness behavior.
Dynamic Crush – Critical for Energy Absorption

Part Testing

Structural Analysis

Part correlation

Test/Simulation correlation

Introduction

Gen3

Characterization

Gen3 Guide

Summary
Guide to Applications of Gen3

Material Portfolio

Functional Objectives

Structural Components

Forming

Assembly

Impact

Global Formability

Local Formability

Crack Resistance

Introduction
Gen3
Characterization
Gen3 Guide
Summary
Material Portfolio – Hance Diagram View

Circle diameter reflects relative yield strength.
Understand the Components Functional Objectives

- Form into complex shapes
- Minimize Intrusion
- Absorb Energy

Load beam reinforcements
- B Pillar reinforcements
- Roof rail inner reinforcements
- Front Roof Header & Bow roof
- Panel Body side sill reinforcements
- Reinforcement Front & Rear rails
- Reinforcement floor cross members
Result with USS solution:

- Safe forming with upgrade & downgage
- Good correlation between CAE and trial
- 13% weight reduction
- Minimal springback without any adjustment to production die
Result with USS solution:

- Safe Forming
- Improved crack resistance
Determination of minimum die radius

Critical R/t Values for 980G3 Materials

- 980G3 HY
 - Transverse: 3.17
 - Longitudinal: 4.67
- 980G3 EG
 - Transverse: 2.5
 - Longitudinal: 2.5
- 980G3 CR
 - Transverse: 3.96
 - Longitudinal: 3.96

Decreasing local formability

Future Paper
Local Formability - Crack Propagation & TFS

Graph showing the relationship between True Fracture Strain (TFS) and Average Crack Length (Bend Crash Test, mm) for different materials:

- PHS 1300
- GI DP 980-IBF (#1)
- GI DP 980-IBF (#2)
- GEN3 980
- DP 980
- TBF 980
- DP 980-HY

The graph indicates a decreasing trend in crack length as TFS increases.
Local Formability - Crack Propagation & TFS

![Graph showing relationship between Total Crack Length (Axial Crash Test) and True Fracture Strain (TFS).](image)

- **DP 980 (LSi)**
- **SHF 1180**
- **DP 980-IBF (GI)**
- **DP 980**
- **TBF 980**
- **GEN3 980**
- **DP 980-HY**

Under Development
Material Portfolio

Functional Objectives
- Form into complex shapes
- Minimize Intrusion
- Absorb Energy

Forming

Global Formability

Local Formability

Assembly

Impact

Crack Resistance

Introduction
Gen3
Characterization
Gen3 Guide
Summary