Permian Unconventional Water Management: Collaboration to Develop Full Cycle Solutions

Presented by Lorena Van Metre
ConocoPhillips Company
As a responsible global energy company committed to sustainable development, we recognize that fresh water is an essential natural resource for communities, businesses, and ecosystems. Global population growth will increase demand for fresh water and all users – domestic, agriculture, and industry – will need to effectively manage supplies to meet demands.
Introduction

• ConocoPhillips is committed to responsible water management in the Delaware Basin

• Limited surface and groundwater resources available

• Traditional solution has been disposal in injection wells

• Tremendous opportunity to reuse produced water

• New full life cycle strategy required an integrated interdisciplinary effort
Delaware Basin

- Permian Unconventional asset is a stacked play

- Water supply, transfer, and disposal can average 20% of well completion costs

- Water to oil ratios are typically above 1:1 so produced water disposal cost can be >25% of lifting costs

- During exploration and early development, minimal infrastructure is in place to support water supply and disposal

- Produced water reuse could mitigate both limitations
Holistic Water Management

Water management solutions must meet the following criteria:

• Must be safe, environmentally responsible, sustainable, and economic

• All water delivered in a timely manner

• Minimize trucking/hauling of water whenever appropriate

• Reuse produced water for stimulation whenever appropriate

• Reuse or dispose of all produced water such that production targets can be achieved
Decision Analysis: Integrated Multidisciplinary Team

- Subsurface (GGRE)
- Drilling and Completions Engineering
- Projects - Development Engineering
- Technology
- Strategic Sourcing, Supply Chain
- Operations and Production
- HSE
- Land, Surface, Legal, Regulatory

Add maximum value to the Delaware Basin development plans by managing the water cycle, providing safely and reliably: water sourcing, transfer, storage, reuse, and disposal.
Decision Analysis: Process

Decision Hierarchy
- **Givens**
- **Strategic (Focus)**
- **Tactical**

Influence Diagram
- **Source**
- **Transfer**
- **Storage**
- **Disposal**
- **Reuse**

Water Management Strategy

Infrastructure

Strategy Table

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Storage</th>
<th>Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Option 1</td>
<td>Option 1</td>
</tr>
<tr>
<td>B</td>
<td>Option 2</td>
<td>Option 2</td>
</tr>
</tbody>
</table>
Select one water management strategy that would fit all criteria

Strategy was a continuum from short-term to full field development

Started with the Full Field Development strategy and long term vision to developed a short-term strategy that improved costs without extensive infrastructure investment
Short Term Solutions Meet Long Term Objectives

- Optimize capital investment for short and long term cost reduction
- Install infrastructure that enables flexibility and choice for short and long term
- In-field gathering for flexibility and optionality in disposal or reuse
- Central gathering and distribution locations
- Utilize technology and temporary solutions
Produced Water Reuse: Water Treatment Goals

- The produced water must not pose a safety risk to operational personnel
- The water treatment process must be cost effective and fit for purpose
- The produced water must perform comparably to the fresh water that was used before in fracture stimulations
- The produced water must not cause any long term production issues or “life of the well” problems
• The basic equation for iron’s reaction with hydrogen peroxide is shown below:

\[2 \text{Fe}^{2+} + \text{H}_2\text{O}_2 + 4 \text{OH}^- \rightarrow 2 \text{Fe(OH)}_3 \]

• The product (ferric hydroxide) is precipitated out in mildly basic conditions
• The addition of \text{H}_2\text{O}_2 initially lowers the pH as \text{OH}^- is consumed
• Adding caustic can help the iron form a colloid so it can be filtered
Produced Water Reuse: Treatment

- As the pH increases, the Fe\(^{2+}\) (ferrous) oxidizes to Fe\(^{3+}\) (ferric))
- Oxidizers make this reaction instantaneous
- Multiple chemicals can be used for iron removal, but H\(_2\)O\(_2\) is easily available and very effective

\[k'' = -\frac{d \log[Fe^{2+}]}{dt} \]

\[P_{O_2} = 0.20 \text{ atm} \]

Temp 25 °C

Stumm and Morgan, 1996
Produced Water Reuse: Treatment

Produced Water

- Oxidant
- Caustic

Reaction (3x500 bbl frac tank)

Clarification

Filtration

Containment (frac tanks)

Well

Biocide
Optimized Process, Optimized Costs

- High rate clarifier for treatment efficiency
- Lower chemical consumption
- Improved solids management
- Flexibility allows for optimized capital investment
Results and conclusions of full cycle water management solution

• Collaborative development drove near term cost reduction, including 50% reduction in disposal cost

• Line of sight to favorable long term economics, sustainability, and resource security for Delaware Basin assets

• Strategy development should be shared amongst various resources and disciplines to address all stakeholder concerns

• Strong communication and collaboration required to ensure short term decisions do not impair long term goals
As referenced multiple times in this paper, this work is the collaboration of asset management, team leads, and dedicated individual contributors. The authors would like to thank the entire Midcontinent Business Unit and Lower 48 water management team for their contributions to this study. Additionally, the authors would like to thank the asset management and ConocoPhillips for allowing us to publish this paper.

Photos originally published in Spirit Magazine Q3 2014, Q4 2015 (Jan Hester, Gus Morgan, Patrick Currey, Hall Puckett)