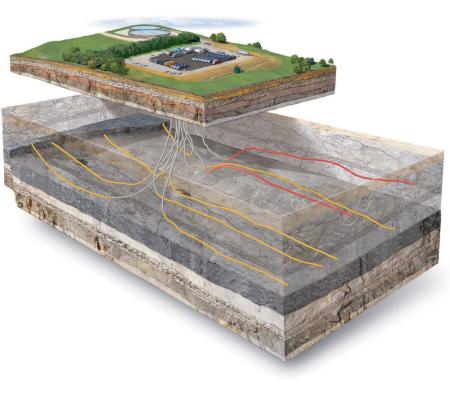
Managing O&G TENORM Waste in Pennsylvania, Cradle to Grave

Presented by:

Luke Marsh Senior EHS Specialist Cabot Oil & Gas Corporation

Luke.Marsh@cabotog.com


Alex Lopez, CHP *Certified Health Physicist* **Perma-Fix Environmental Services, Inc.** alopez@perma-fix.com

Overview

- Waste Generation Process
- Characterization of Waste
- Regulations
 - Radiation Protection Action Plans
 - Transportation
 Requirements
 - Disposal Options
- Risk Mitigation and Worker/ Public Safety Measures

Radioactivity: Natural

- Oil and gas deposits exist in geologic formations that contain naturallyoccurring radioactive materials (NORM)
 - Uranium (U-238)
 - Parent + 13 radioactive progeny
 - Alpha, beta, gamma radiation
 - Thorium (Th-232)
 - Parent + 10 radioactive progeny
 - Alpha, beta, gamma radiation
 - Secular Equilibrium in the rock (drill cuttings)

Radioactivity: NORM & TENORM

Drill Ittings	Uranium Decay Series		
²³⁸ U	230 U	4 .5 × 10 ⁹ y	<u></u>
²³⁴ Th	²³⁴ Th	24:0 d	β,γ
^{34m} Pa	234m Pa	1,2 m	β, γ
²³⁴ U	²³⁴ U	2 ,5 × 10 ⁵ y	QL, γ
Fluids	²³⁰ Th	7,7 ×10 ⁴ y	α, γ
²²⁶ Ra	226 Ra	1.6 × 10 ³ y	α, γ
²²² Rn	222 Rn	3.83 d	α
²¹⁸ Po	²¹⁸ Po	3.1 m	Q.
²¹⁴ Pb	214 Ph	27 m	β, γ
²¹⁴ Bi	²¹⁴ Bi	20 m	β, γ
²¹⁴ Po	²¹⁴ Po	1.6 × 10 ⁻⁴ s	α, γ
²¹⁰ Pb	²¹⁰ Pb	22.3 y	β, γ
²¹⁰ Bi	210 R i	5.01 d	
²¹⁰ Po	210 Po	138 d	<u>ĝ</u>
²⁰⁶ Pb	206 Pb	Stable	none

Drill			
Cuttings			
Fluids			
²²⁸ Ra			
²²⁸ Ac			
²²⁸ Th			
²²⁴ Ra			
²²⁰ Rn			
216 Po			
212 Pb			
²¹² Bi			
²¹² Po			
²⁰⁸ Tl			
²⁰⁸ Pb			

Thorium Decay Series

_		
²³² Th	1.4×10^{10} y	Øŧ
²²⁸ Ra	5.7 y	3
²²⁸ AC	6.1 h	β, γ
²²⁸ Th	1,9 y	Qt, Y
²²⁴ Ra	3,7 d	et, y
²²⁰ Rn	55.6 \$	æ
²¹⁶ Po	0.15 s	α
²¹² Pb	10.6 h	₿, γ
²¹² Bi	61 m	α, β, γ
²¹² Po	3 × 10 ^{:7} s	Â
²⁰⁸ Tl	3.1 m	β, γ
²⁰⁸ Pb	Stable	none

CABOT OIL&GAS

Си

23

CABOT OIL & GAS

Radioactivity: TENORM

- Technologically-enhanced NORM (TENORM)
- Sludge
 - Produced/Flowback fluids
 - Water treatment- metals extraction inadvertently concentrates radium in filter cake sludge
 - Tank clean-out material
 - Filter socks
- Scale
 - Group IIA elements (barium, strontium, calcium, radium) form pipe / tank scales
 - Acidity, temperature, and pressure contribute to scale build-up
 - Gas transportation (radon)

A&M Hibbard Centralized Treatment Facility

- Located in Susquehanna County, Pennsylvania
- Cabot owned (WMGR123 permit); operated by third party contractor
- Treatment of primarily Flowback/Produced fluids for reuse in Cabot's operations in NE PA
- Fluid Treatment Strategy
 - Removal of targeted metals and other potential scale builders
- Capacity to treat ~22,000 bbls per day
- Treated ~10,000,000 bbls for reuse since 2012

A&M Hibbard Centralized Treatment Facility

Filter Cake – TENORM WASTE

- Dewatered solids are collected from the filter press
- Immediately placed into 96 CF IP-certified supersacks
- Characterized via onsite assay
 - Additional samples collected for analysis by third party laboratory
- Moisture readings are collected onsite
- Adhere to site Radiation Protection Action Plan (RPAP)
- Qualified individual onsite collects necessary dose readings and/or smear samples
- Shipping papers are prepared (Class 7 Radioactive Waste)
 - Most waste generated at the facility is greater than 270 pCi/g
 - PADEP TENORM Shipping Factsheet
- TENORM waste is disposed offsite
 - Truck Transload Rail
 - EnergySolutions Clive Disposal Site in Utah
 - US Ecology Idaho Disposal Facility

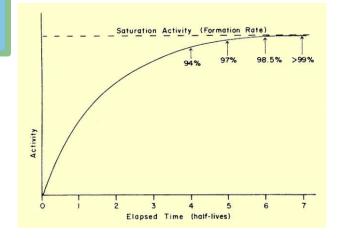
TENORM Waste Characterization

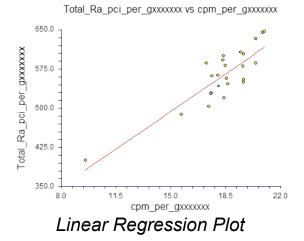
- Total Radium (Ra-226/228) typical analytical sample process:
 - Collect sample
 - Ship to lab
 - Lab dries/grinds sample material, containerizes, and seals sample
 - 21-day ingrowth of radium progeny
 - Analysis using gamma spectroscopy (EPA 901.1)
 - Additional parameters required in PA - gross alpha/gross beta, Th-232 and U-238
 - Typical turnaround time of ~45 days

Problem:

- Adds significant cost to the operator to stage waste during lab analysis
- Waste storage space is limited

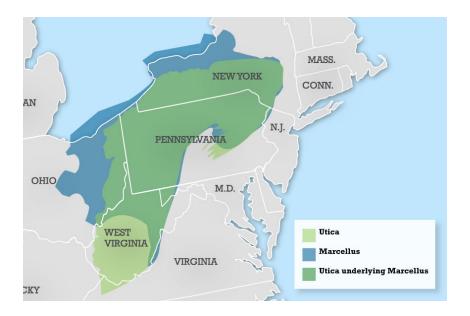
TENORM Waste Characterization


Solution:


Developed an Accurate / Simple Onsite Approach to Characterize Samples

Benchtop Nal Detector

- Fixed Geometry
 - Identical sample containers
 - Fixed sample count position
 - Fixed sample count time
 - Background correction
- Filter cake samples collected onsite and counted at t = 0 and t = 3 days
- Data analysis was performed to determine the optimal onsite sample count window (~3-days of ingrowth)
- Confirmation samples sent offsite for 3-day and 21-day analysis at multiple laboratories
- Using analytical results, a correlation between onsite and offsite results was established by plotting a best-fit line with statistical software
- Standardized meter operation / sample analysis by developing an SOP for WWTF operator

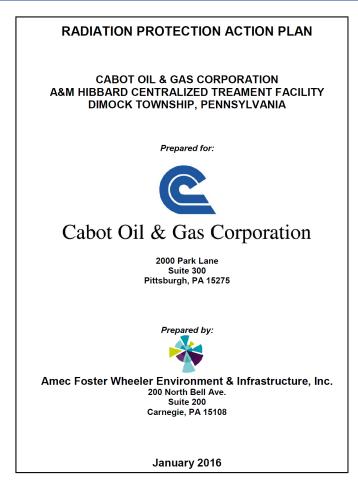

 $A_d(t) \approx A_p \left(1 - e^{-\lambda_d t} \right)$

Regulations - National

- The U.S. Nuclear Regulatory Commission (NRC) does not regulate or license NORM and TENORM
- Authority falls to the 50 individual states and miscellaneous federal agencies
- U.S. Department of Transportation regulates the packaging, labelling, and transportation of NORM- or TENORM- containing materials
- U.S. Environmental Protection Agency (EPA) regulates radioactivity in drinking water
- U.S. Occupational Safety and Health Administration (OSHA) regulates employee exposure to radioactive material
- States that have entered into an agreement with the NRC allow states to have their own radiation protection regulations
 - 37 Agreement States

- Agreement state
- Except for transportation, NORM & TENORM is under regulatory control of the PA Dept. Of Environmental Protection
- Disposal options in PA do exist for some low-level NORMcontaining wastes
 - Based on landfill specifics, require dose modelling and PA DEP approval
 - Each landfill has monthly concentration volumetric limits

Regulations - Pennsylvania


Radiation Protection Action Plans (RPAP)

- PA DEP DOCUMENT NUMBER: 250-3100-001
- TITLE: "Final Guidance Document on Radioactivity Monitoring at Solid Waste Processing and Disposal Facilities"
- Action Plans will be part of the solid waste facility permit by modification, and must be approved by the Department

Regulations - Pennsylvania

Hibbard A&M Centralized Treatment Facility RPAP

- Key Components:
 - Responsible personnel
 - Radiation detection instruments
 - Annual calibration
 - Daily checks
 - Radiation surveys of outgoing material
 - Action Levels
 - Levels and responses
 - Training
 - Documentation
 - ALARA Program

Transportation of TENORM Waste

• PADEP TENORM Shipping Fact Sheet

- >270 pCi/g must be DOT Class 7 waste
- Class 7 Radioactive Waste
 - Must be properly manifested
 - Qualified individuals must complete shipping papers
 - Drivers must have Haz Mat endorsement on license
 - Conveyances must be properly placarded/labeled
 - Must maintain shipping records

Know your transportation route

Public sensitivity

Disposal of TENORM Waste

- PA landfills have pre-determined allotment of monthly TENORM tons (landfill specific)
- TENORM tons calculated from dose (issues with multiplier)
- What is the landfill-specific waste acceptance criteria (WAC)
- What other constituents are in the waste (i.e. Barium)?

ENERGY SOLUTIONS

~Class A LLRW, NORM / TENORM, Class A Mixed LLRW (radioactive and hazardous)

~Waste Acceptance: Ra-226 up to 10,000 pCi/g Location: Clive, UT

US ECOLOGY IDAHO

RCRA / TSCA, NORM / TENORM

~Waste Acceptance: Ra-226 + Ra-228 up to 1,500 pCi/g

Location: Grand View, ID

US ECOLOGY MICHIGAN

- ~RCRA / TSCA, NORM / TENORM
- ~Waste Acceptance: Ra-226 up to 50 pCi/g Location: Belleville, MI

15

Risk Mitigation

RPAP Requirements

- ALARA Policy (As Low As Reasonably Achievable)
- Training
- Documentation
- Surveys of outgoing waste loads
- Etc.

WORKER PROTECTION

True Worker Protection (Risk Management) Requires More Than Just RPAP Compliance

WORKER PROTECTION

Evaluate Potential and Actual Radiation Exposures (Dose)

- Initial facility exposure rate assessment
- Periodic exposure rate assessments, quarterly Health Physics audits
 - Walk-around dose rate and gross gamma rate surveys
 - Removable alpha and beta radiation surveys
 - Worker interviews
 - Documentation review
- Dosimetry- WWTF Operator administers dosimetry program
- Multiple radon evaluations at the facility
- 3-month continuous air monitoring campaign for alpha/beta
- Personal air monitoring during tank cleaning

Radiation Hazards and Monitoring Results

- Radiation Hazards
 - Typical Radiation Exposure Levels at WWTF
 - ~5 to 20 µrem/hr (0.005 0.02 mrem/hr)
 - Typical Radiation Exposure Levels of TENORM waste containers
 - ~20 to 500 µrem/hr (0.02 0.5 mrem/hr)
 - Typical TENORM concentrations
 - ~200 to 600 pCi/g total Ra (Ra-226 + Ra-228)

Radiation Monitoring

- Dosimetry
 - < 100 mrem/yr
 - Air Monitoring
 - ~ Background
 - Radon Monitoring
 - ~ Background
 - Contamination
 - ≤ 20 dpm/100cm² alpha
 removable following
 decontamination
 - Reg. Guide 1.86 criteria

WORKER PROTECTION

- PPE Evaluation- Initial and continuous
- Worker Training
 - All workers receive NORM Awareness Training
 - RPAP Supervisors receive extensive NORM and RPAP Training
- Radiological Controls
 - Postings
 - Access Controls
 - Equipment
 - Develop and Implement SOPs

SOPs

- Filter Cake Sample Collection / Analysis
- Operation of Radiation Survey Instruments
- Equipment Decontamination
- Production Tank Clean-out
- TENORM Loading, Transportation and Contingency
- Filter Cake DOT Communication Compliance
- Supersack Loading
- Adding Absorbent to Supersacks
- Filter Press Operation
- Solids Testing Filter Press Cake
- Railcar Inspection
- Conveyance Inspection

REDUCE ENVIRONMENTAL LIABILITIES

- Baseline Survey
 - Walkover gamma survey performed to document the baseline conditions prior to initiating water treatment activities
 - Results will be compared to future surveys
- HAZMAT Incident Training
- Radiation Fact Sheet (public communication external affairs)
- Documentation!!!

- Hydraulic fracturing for oil and gas has brought radiological issues into the spotlight
 - Consider applicability of federal and state regulations that may apply
 - RPAP requirement
 - Transportation and disposal
 - Markings, labels, paperwork
 - Local or transcontinental disposal
 - Worker annual dose limits
 - Public or OSHA occupational
 - Implementing a robust NORM/ TENORM Management Program:
 - Basic radiation safety practices
 - Reduce occupational and public exposures
 - Reduce environmental liability
 - Reduce long-term costs

A decade of progress and perseverance in the Marcellus Shale.