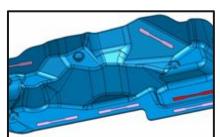


A QUALITY APPROACH TO MATERIALS SELECTION AND DEVELOPMENT GLOBAL AUTOMOTIVE LIGHTWEIGHT MATERIALS EUROPE 2017

Robert Best 25 April 2017


Confidential ©2017

A Quality Approach to Materials Selection and Development Contents

- Jaguar Land Rover Overview
- Failure Mode Avoidance
 - Functions & Requirements
 - Case Study 1: Cosmetic Castings
 - Failure Modes & Causes
 - Mitigation Strategies
 - Case Study 2: Corrosion in Mixed-Metal Structures
- Uses of FMA Tool
 - FMA for Materials Selection
 - Case Study 3: Supply Route Approval
- Summary

JAGUAR LAND ROVER Our Business

14 vehicle lines.

3 UK vehicle assembly plants, 1 engineering and manufacturing centre and 2 UK design and engineering sites.

40,000 people globally – headcount has almost doubled over the last five years.

Plants in China, India and Brazil.

Employs over 10,000 engineers and designers.

Sales network in 136 countries.

Jaguar Land Rover is the largest automotive employer in the UK.

201 awards won in 2016.

JAGUAR LAND ROVER In The UK Economy

LEADING PREMIUM AUTOMOTIVE BUSINESS IN THE UK

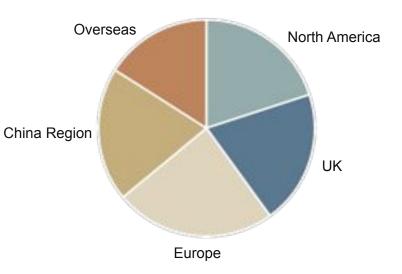
- The only volume manufacturer of luxury vehicles in the UK
- The largest investor in automotive R&D and engineering in the UK

A MAJOR PROVIDER OF HIGHLY SKILLED JOBS IN THE UK

- Jaguar Land Rover is the largest automotive employer in the UK
- Supports up to 275,000 people through the supply chain, dealer network and wider economy
- Recruited 24,000 people since 2010

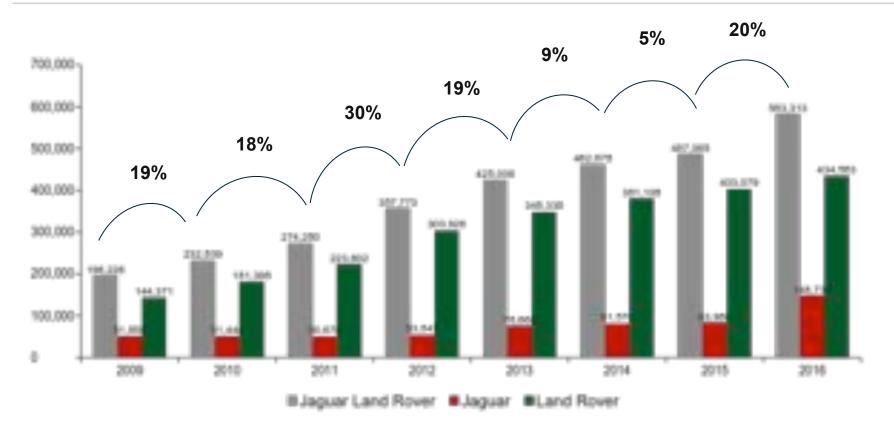
Almost 80% of production exported from three plants in the UK

LED BY ADVANCED DESIGN, ENGINEERING AND TECHNOLOGY


- Has a world-class team with over 10,000 engineers and designers
- Invests £150 million in an advanced research facility together with Warwick Manufacturing Group and TMETC at University of Warwick to accelerate innovation
- £1billion investment in stateof-the-art advanced engine facility

JAGUAR LAND ROVER 2016 Full Year Global Sales Results*

Market	Sales	% vs. prior year	% sales volume
North America	117,278	25%	20%
UK	117,571	17%	20%
Europe	138,695	26%	24%
China Region	119,049	31%	20%
Overseas	90,720	(0.5%)	16%
Total	583,313	20%	100%


% Sales Volumes

*Including CJLR sales

SUSTAINED GROWTH Driven By Great Products

JAGUAR PRODUCT LINEUP

XJ

The XJ is a dramatic combination of beauty, luxury and power

XF Sleek, dynamic, daring, XF is a fusion of sports car styling with outstanding comfort

XE

The most advanced, efficient and refined sports saloon that Jaguar has ever produced

I-PACE

The Jaguar I-PACE Concept is the first step towards our future

XFL

Developed exclusively for

China, the all-new XFL delivers

unparalleled passenger luxury

and technology

F-TYPE

Powerful, agile and distinctive, F-TYPE is a true Jaguar sports car

F-PACE

The all-new Jaguar F-PACE: a performance crossover from Jaguar for those who love driving

LAND ROVER PRODUCT LINEUP

New Discovery

Discovery Sport

The best family SUV in the world, with unrivalled capability and technology

The first in a new generation of Land Rover SUV design

Range Rover Velar

The first vehicle of it's kind: another pioneer, exploring the frontier for luxury SUVs

Distinctive and individual. a true Range Rover in compact form

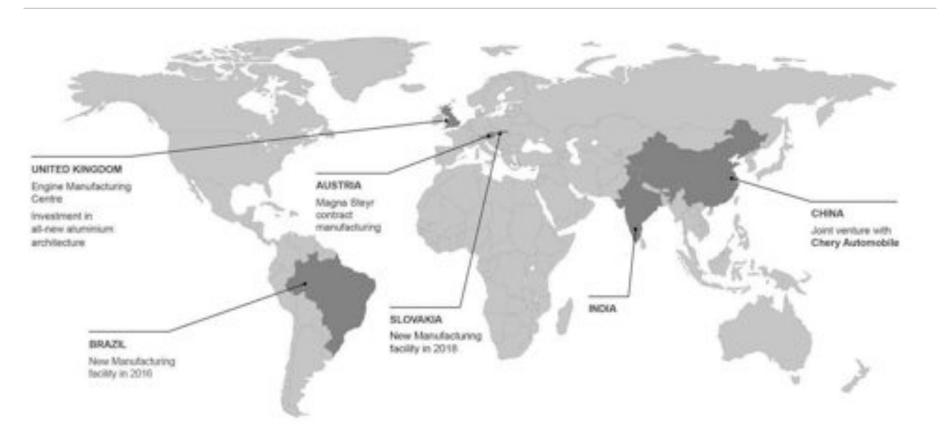
Range Rover Evoque Convertible

Land Rover's latest luxury convertible SUV

Range Rover Sport

The most agile and dynamic Land Rover **Range Rover**

The pinnacle of refined capability


JAGUAR LAND ROVER Manufacturing and Product Development Facilities

GLOBAL INVESTMENT IN INFRASTRUCTURE

BODY MATERIALS – KEY BUSINESS DRIVERS

Design Performance Capability Sustainability Supply

- Quality, premium segment vehicle
- Fun to drive
- Reliability and durability
- Economic plus environmental
- Global availability, global production

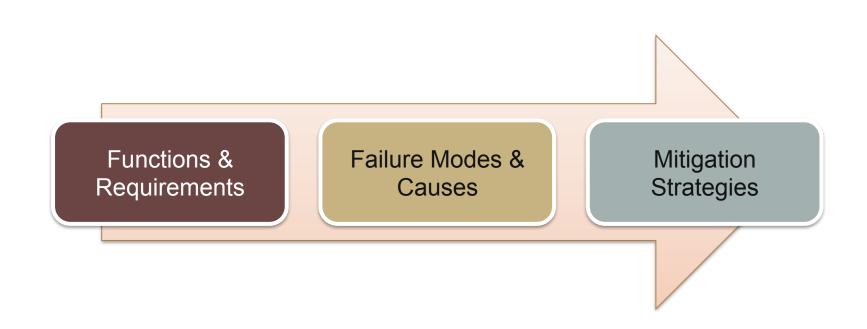
BODY MATERIALS – KEY BUSINESS DRIVERS

Body Materials to meet Business Drivers


Business Driver	Material Requirement	
DesignQuality, premium segment vehicle	 Advanced high-form materials Improved visual quality 	
PerformanceFun to drive	 Mixed-material architectures - right material right place Advanced high strength materials 	
 CapabilityReliability and durability	 Manage corrosion and durability Develop and implement design guidelines 	
Sustainability Economic plus environmental 	 CO₂ impact Recyclability Cost of production 	
SupplyGlobal availability, global production	 Equivalencies of local materials on global scale Supply route approvals 	

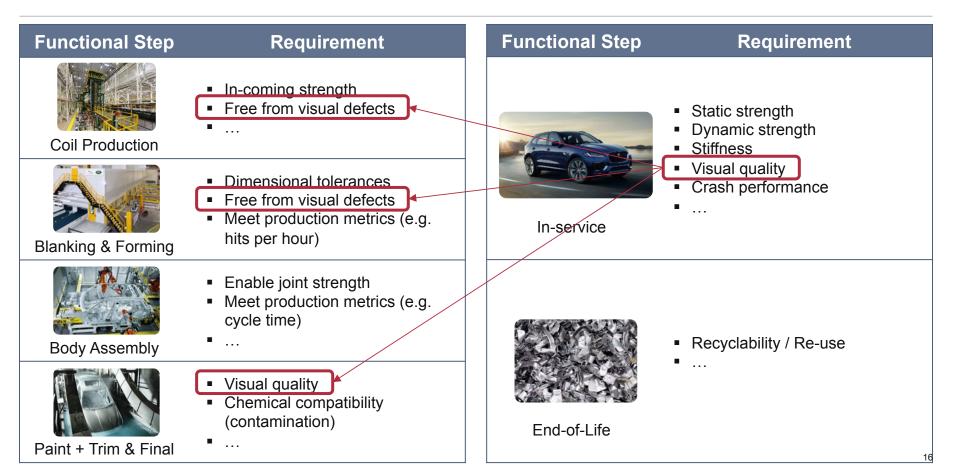
A Quality Approach to Materials Selection and Development Contents

- Jaguar Land Rover Overview
- Failure Mode Avoidance
 - Functions & Requirements
 - Case Study 1: Cosmetic Castings
 - Failure Modes & Causes
 - Mitigation Strategies
 - Case Study 2: Corrosion in Mixed-Metal Structures
- Uses of FMA Tool
 - FMA for Materials Selection
 - Case Study 3: Supply Route Approval
- Summary



A Quality Approach to Materials Selection and Development Failure Mode Avoidance – Functions & Requirements

A Quality Approach to Materials Selection and Development Failure Mode Avoidance – Functions & Requirements



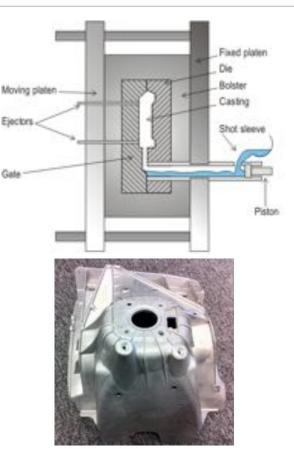
End-of-life 15

In-Service

A Quality Approach to Materials Selection and Development Failure Mode Avoidance – Functions & Requirements



CASE STUDY 1: COSMETIC CASTINGS

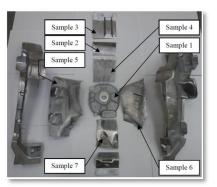


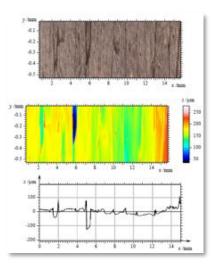
A Quality Approach to Materials Selection and Development Case Study 1: Cosmetic Castings

- 1. Measured quantity of molten metal poured into shot sleeve
- 2. Hydraulically injected at high-pressure into mould
- 3. Metal rapidly solidifies and part ejected

- Used throughout automotive industry in aluminium intensive & mixed-material structures
 - Aluminium
 - Front Shock Tower; Rear Swan-neck
 - Magnesium
 - Front End Carrier; Cross-car Beam

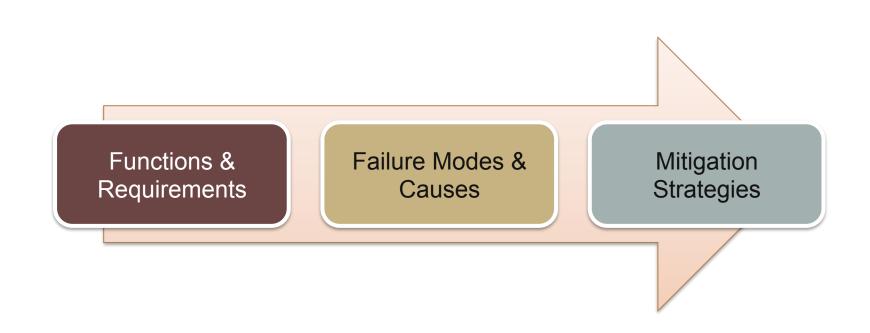
A Quality Approach to Materials Selection and Development Case Study 1: Cosmetic Castings


- Casting defects can occur on parts as die wears
 - Due to thermal fatigue and liquid metal erosion
 - Manifests as nibs (pips) and heat checks on cast part
- Defects can be unacceptable on two accounts:
 - Safety Of operator during assembly (nibs)
 - Cosmetic When used in visible locations surface must have satisfactory aesthetics
- Requirement for Visual Quality (aesthetics) not well defined
 - Previous castings were not visible to customer



A Quality Approach to Materials Selection and Development Case Study 1: Cosmetic Castings

- 1. Agreed threshold / boundary samples
 - Plant Quality Voice of Customer


- 2. Characterised surfaces and defects
 - In collaboration with National Physical Laboratory (NPL)

3. Developed specification and disseminated to supply base

A Quality Approach to Materials Selection and Development Failure Mode Avoidance – Failure Modes & Causes

A Quality Approach to Materials Selection and Development Failure Mode Avoidance – Failure Modes & Causes

Causes

Material Properties

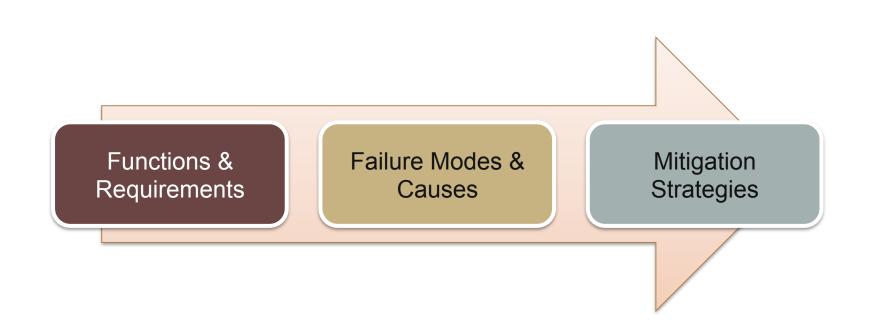
- In-coming supply variation Aging
- Evolution stamping/paintbake

Introduced Defects

- Manufacturing coil production/stamping
- In-service stone-chipping

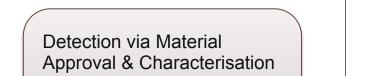
Failure Mode: Strength requirement not met

Part Design


- Geometry effects stressraisers/corrosion
- Joining techniques Local property variation. Geometric stress-raisers

Part Properties

 Changes over time – corrosion/fatigue


A Quality Approach to Materials Selection and Development Failure Mode Avoidance – Mitigation Strategies

A Quality Approach to Materials Selection and Development Failure Mode Avoidance – Mitigation Strategies

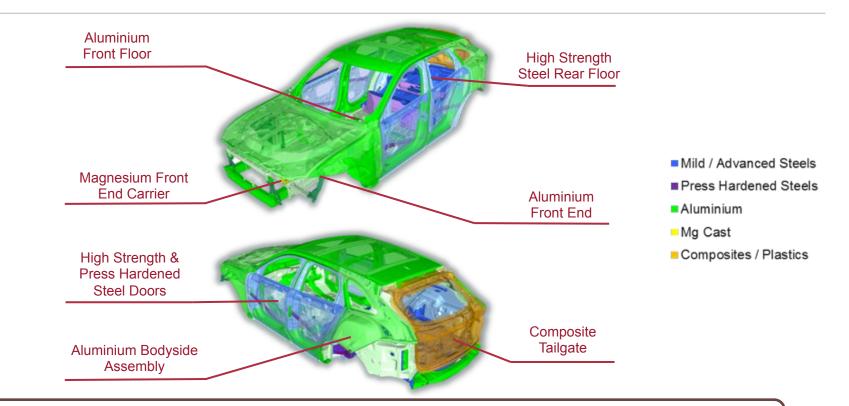
- Testing against requirements
- Characterisation to generate design data

Prevention via Part Design

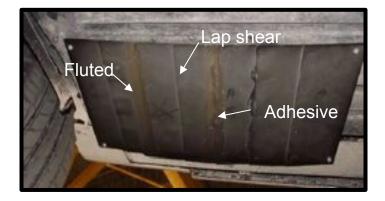
- Material selection strategies
- Design rules / guidelines
- Working practices / procedures

Prevention via Routine Controls

- Coil release testing against specification
- Compliance checklists
- Inspection processes
- Process capability monitoring


Identify material failure modes and/ or causes Manage issues identified during Material Approval process

CASE STUDY 2: CORROSION IN MIXED METAL STRUCTURES

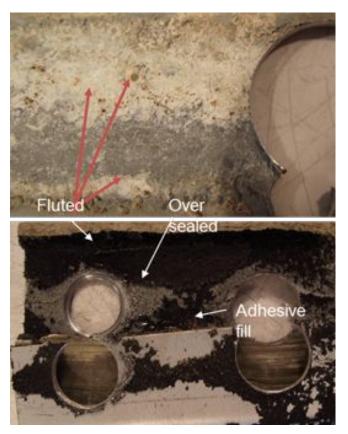


New vehicle architecture utilised multi-material approach to the body, enabling a stiff, weight efficient construction. **Right Material in Right Place.** But introduces additional Failure Modes.

- Mixed-metal joints evaluated on test vehicle (12 week test)
- Test plaques mounted on side doors (vertical orientation) and underbody (horizontal orientation) of a test vehicle

• Combinations of bake-hardening steel, 6xxx and 5xxx aluminium in unsealed, sealed and fluted joint configurations

- Two types of adhesive evaluated
- Joints with and without overseal included



- Corrosion in all unsealed areas. High Risk
- Adhesive coverage in fluted joints retains moisture and promotes corrosion initiation. Moderate Risk – flute geometry optimised for good e-coat coverage
- Dirt ingress to lap joint where adhesive does not seal the edge promotes crevice corrosion. Moderate Risk – managed by controlling squeeze out
- Over-sealing robustly seals the lap joint and protects against corrosion. Low Risk
- Comparable performance of horizontal and vertical mounted test plaques

Mitigation Strategies

Detection via Material Approval

Specification Requirements

- Cabinet-based component level tests (e.g. NSS, CCT, Filiform, CASS)
- Vehicle Corrosion Test for Engineering sign-off

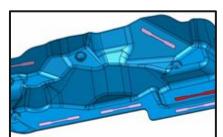
Design Rules

- Joint geometry, adhesive fill, e-coat coverage, use of wax
- Best Practice Guidelines
- Lessons learned
- Standards & Procedures
- · Coating weights, corrosion requirements

Research & Development (continuous improvement)

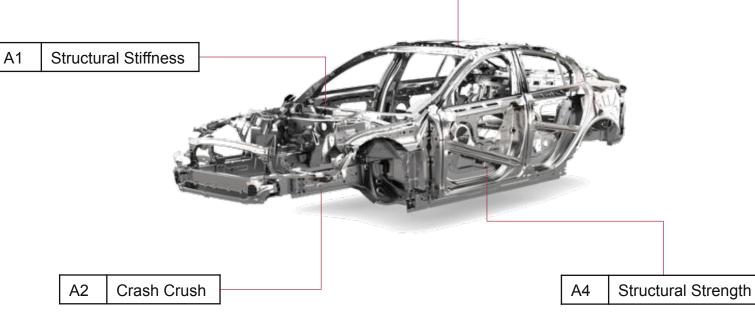
Test Method Development

- •JLR Cyclic Corrosion Test (replication of on-vehicle failure modes).
- Corrosion Strategy Refinement
- •Vehicle corrosion sensor development (define corrosion risk zones in the vehicle)


Prevention via Part Design

A Quality Approach to Materials Selection and Development Contents

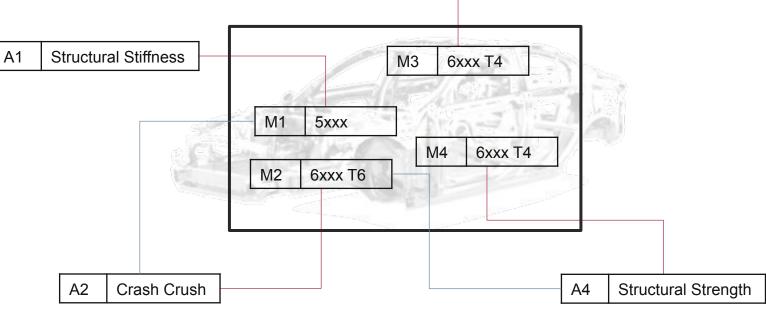
- Jaguar Land Rover Overview
- Failure Mode Avoidance
 - Functions & Requirements
 - Case Study 1: Cosmetic Castings
 - Failure Modes & Causes
 - Mitigation Strategies
 - Case Study 2: Corrosion in Mixed-Metal Structures
- Uses of FMA Tool
 - FMA for Materials Selection
 - Case Study 3: Supply Route Approval
- Summary



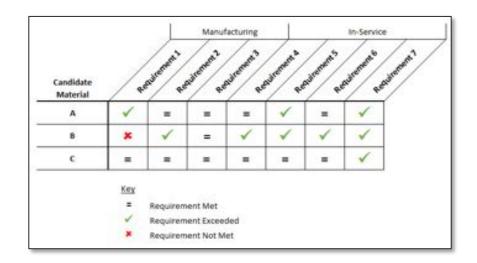
Exterior Panel (skin)

A3

- To use FMA tool for Materials Selection
 - Consult Boundary Diagram
 - Aligns materials to applications



Exterior Panel (skin)


A3

- To use FMA tool for Materials Selection
 - Consult Boundary Diagram
 - Aligns materials to applications

- To use FMA tool for Materials Selection
 - Consult Boundary Diagram
 - Aligns materials to applications
 - Cross-reference application requirements against candidate materials
 - If applicable, rank performance of candidates against requirements

- To use FMA tool for Materials Selection
 - Consult Boundary Diagram
 - Aligns materials to applications
 - Cross-reference application requirements against candidate materials
 - If applicable, rank performance of candidates against requirements
 - Individual material selection exercise will also incorporate project specific requirements such as:
 - Cost
 - Availability
 - Bill of Process / Bill of Design
 - Regulations

CASE STUDY 4: CASTING MATERIAL APPROVAL

Business Need

• Lower cost castings

Proposed Solution

New casting material which does not need strengthening heat-treatment

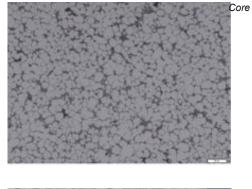
Requirements

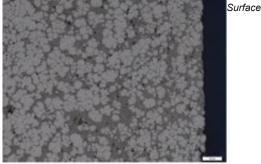
• Meet current casting application requirements

Process

- FMA used to identify significant characteristics and define suitable test programme
 - Case Study looks at Strength only

Functional Step	Requirement
Casting	 In-coming strength Free from visual defects
Body Assembly	 Enable joint strength Meet production metrics (e.g. cycle time)
Paint + Trim & Final	Visual qualityChemical compatibility (contamination)
In-service	 Static strength Dynamic strength Stiffness Visual quality
End-of-Life	 Recyclability / Re-use

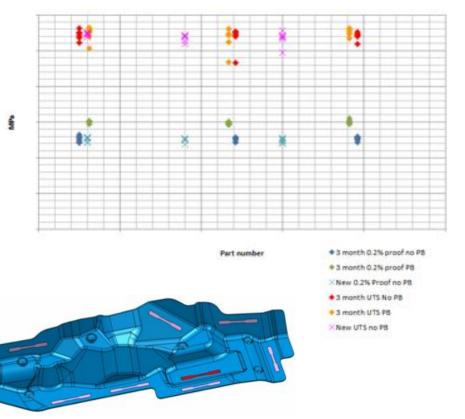

Requirement	Failure Mode	Cause	Mitigation (Test Programme)	
strength	Yield strength requirement not met	Yield strength too low due to internal defects	 Microstructural Analysis – Adjacent to tensile test locations 	
		Yield strength too low due to elemental segregation	 Tensile testing and Chemical Analysis – comparison across part and in varying thickness material 	
		Yield strength too low due to variations in part thickness	 Tensile Testing across part and in varying thickness material for "new" material and material 	
		Yield strength too high due to aging	aged for 3 months	
		Yield strength too low due to incorrect heat treatment	 Not relevant: no heat treatment in this case 	
		Yield strength too low due to incorrect chemistry	 Chemical Analysis – comparison between melt chemistry, bulk chemistry and surface chemistry 	


Chemical Analysis Results

- Confirmed as AIMgSi alloy
- Variation in chemistry through thickness; high silicon content at surface
 - Typical of HPDC aluminium alloy

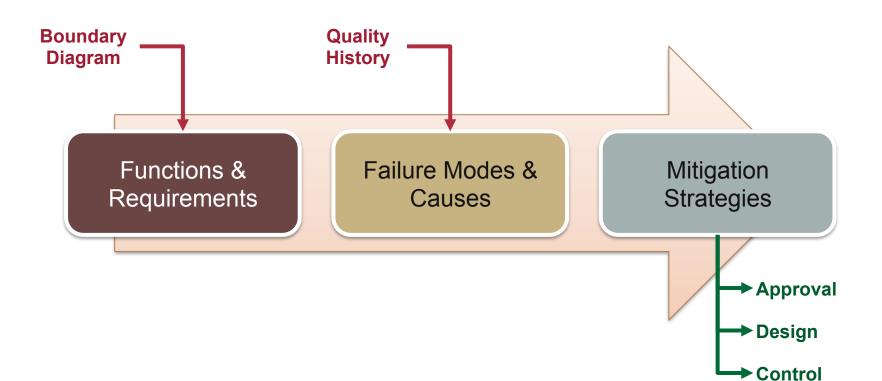
Microstructural Analysis Results

- Microstructural images taken at regular intervals through thickness across part
- Variation through thickness consistent with variation in composition
- Aluminium solid solution with interdendritic silicon eutectic
 and intermetallic particles
 - Typical of HPDC aluminium alloy



Tensile Test Results

- Consistency across batch
 - Parts selected at random from beginning, middle and end of batch
- Consistency across part
 - Tensile tests in 8 locations across part
- No discernible effect of aging between new parts and 3 months old
- Larger effect of paint-bake on proof strength than UTS
 - Typical of HDPC aluminium alloy
 - All results meet requirements of casting specification



Conclusion

- FMA used to define test programme based on functional requirements of material in application
- For example, to evaluate In-Service Static Strength requirement, following assessments were made:
 - Chemical analysis
 - Microstructural analysis
 - Tensile testing
- In this case:
 - All requirements were met with new alloy
 - No additional failure modes or causes were identified

A Quality Approach to Materials Selection and Development Failure Mode Avoidance – Summary

BODY MATERIALS – KEY BUSINESS DRIVERS

Body Materials to meet Business Drivers

Business Driver	Material Requirement	FMA can help to…
DesignQuality, premium segment vehicle	 Advanced high-form materials Improved visual quality 	Define test programmes for materials approval
PerformanceFun to drive	 Mixed-material architectures - right material right place Advanced high strength materials 	Inform materials selection processes
CapabilityReliability and durability	 Manage corrosion and durability Develop and implement design guidelines 	Mitigate potential failures modes
SustainabilityEconomic plus environmental	 CO₂ impact Recyclability Cost of production 	Highlight areas for improvement
SupplyGlobal availability, global production	 Equivalencies of local materials on global scale Supply route approvals 	Identify key characteristics to control

A Quality Approach to Materials Selection and Development Acknowledgements

- Thank you to:
 - Helen Dugdale
 - Matt Walters
 - Ian Cross
 - Mike Lough

THANK YOU

Robert Best Project Engineer – BIW Materials

M +44(0)7469 038 422

robert.best@jaguarlandrover.com

Jaguar Land Rover W/1/26 Abbey Road, Whitley Coventry CV3 4LF, UK

jaguarlandrover.com