FAILURE PREDICTION & EQUIPMENT RELIABILITY

Mohammad Evazi Data Scientist, California Resources Corporation

Agenda

- About CRC
- Introduction to Data Science
- Applying machine learning to sucker rod pumps
- Dynamometer card classifier
- Well failure prediction and root-cause analysis
- Way forward

About CRC

- California Resources Corporation (CRC) is an oil and gas exploration and production company operating properties exclusively in the state of California
- 2014 spin-off of Occidental Petroleum
- Operates in San Joaquin, Los Angeles, Ventura and Sacramento basins
- Produces 134 MBOE/d with 60% oil
- Big Data Analytics Team formalized in late 2017

Data Science

- No consensus on the definition!
- Mathematics + Programming + Domain Expertise (physics)
 - These sets of tools provide a framework that can solve some of

the data-intensive problems that we couldn't tackle before

- Data science requires an innovation mindset; it takes time and iteration to succeed
- Early engagement of domain experts and agile development to establish quick-wins

Data Science Workflow - Tools

Programming: Python, Matlab, R

Building a Machine Learning Model

Well Failure Prediction: Size of the prize

- About 1,000,000 oil wells worldwide on sucker rod pump
- Annual failure rate of 0.2-0.6 per well
- Average failure cost is about \$30K
- Related downtime and oil production lost

Project Progression

Understanding Data

• Well data collected by POC

- Sensors: Load cells, transducers, etc.
- Data: Surface card, card area, peak/min load, SPM, csg/tbg pressure, pump fillage, etc.
- These signals are recorded in XSPOC databases
- Analog and dynamometer card data simultaneously available only from Dec 2017

Failure Root Cause

Mechanical

- Improper design/ manufacturing
- Wear and tear during operations
 - Sand intrusions
 - Fluid pounding
 - Rod cutting
 - Asphalting

• Chemical

Corrosion by H2S, CO2, etc.

Applying Machine Learning to Rod Pumps

Dynamometer card

- Dynocard data is health indicator for a rod pump well
- More than 100,000 cards per day stored by CRC wells
- Classification enables time-series
 visualization of card data
- Dynocard visualization over time facilitates suboptimal well diagnostics and failure prediction

Building a Dynocard Classifier

>100k cards

Feature engineering

- Card area •
- Perimeter
- Area above card
- Area Below card
- Fillage ٠
- Compression length
- Max load
- Max position
- Cumulative load
- Load center ٠
- Position center

Well Failure Prediction: Industry Status

- Can we predict failures?
- USC-Chevron, PhD and MS students (SPE 165374, **2013**)

	Tubing & Pump Failure
Precision (%)	65

 Ospreydata Inc, founded in 2013 (SPE 190090, **2018**)

	Tubing Failure	Pump Failure
Precision (%)	54	71

Rod Pump Failure Analytics

Value of Analytics

Failure Prediction

Data pre-processing

Understand indicators of failures (signals and card classes)

Detect early signals leading to an event

Build database of historical pre-failure signals (manual vs automated)

Train predictive failure models

Maintain and improve models

Data Pre-processing Data

- Filter wells
 - Method of production: Rod pump
 - Primary failure mode, e.g. Pump
 - Secondary failure mode, e.g. Sanding, low production, scaling, etc.
- Consolidate analog data with dynocard features
 - Area, perimeter, centroids, area above, area below, etc.
- Unify time resolution. Interpolation needed?
 - Forward fill, backward fill, linear interpolation

Feature Engineering

- Original features: Peak Load, Min Load, Run time, area, fillage, dynocard features, etc.
- Normalize features
- FE level 1: Backwards sliding window feature generation¹
 - A: Long-term statistical summary (e.g. last month)
 - B: Short-term statistical summary (e.g. last week)
 - C: Current Statistical summary (e.g. last 3 days)
 - Feature group 1: B/A
 - Feature group 2: C/A
- FE level 2: Include last n days of feature groups at each example

¹SPE 165374

Pump Failure Modes/Root-Cause (Field X)

Pump Failure Due to Low Production

Pump Failure Due to Low Production

Character Responsibility Commitment | 22

Pump Failure Due to Low Production

CALIFORNIA RESOURCES CORPORATION

Character Responsibility Commitment | 23

Pump Failure Due to Sanding

Pump Failure Due to Sanding

Character Responsibility Commitment | 25

Pump Failure Due to Sanding

Character Responsibility Commitment | 26

Summary

- We can achieve full potential by preventive maintenance enabled by Rod pump prescriptive analytics.
- Prescriptive analytics requires failure predictive and descriptive capabilities.
- We are working with SMEs to more accurately determine failure intervals and label the root cause.
- Built dynocard classification model. We are working to use it for well optimization.
- We are expanding our failure data lake card data are now permanently stored.

Thank You

Confusion Matrix and Precision-Recall Curve

Confusion Matrix

Precision-Recall Curve

Model performance is adjustable by the business value

Character Responsibility Commitment | 30