Industrial Internet of Things (IIoT) and the Future of Electric Vehicle Manufacturing -Overcoming Challenges to Achieve Profitability

Prepared for:

Lightweight Materials Joining, Forming, & Manufacturing Innovation 2019 Summit

> Presented by: Vishwas Shankar Research Manager – Mobility Frost & Sullivan

FROST & SULLIVAN

Presentation Agenda

Presentation Agenda

FROST & SULLIVAN

Digital Transformation of the Automotive Industry Focal Points

Automotive digitalization focuses on five key pillars

- Connected Supply Chain
- (*Value chain disruption
- *Intelligent fulfilment
- *Responsive supply networks *Smart logistics)
- IloT
- A.C.E. vehicles
- Digital Retailing
- Mobility as a Service (MaaS)

Automotive IIoT spend is bound to increase at a CAGR of 11.5% (2015-2025)

- \$12.30 billion in 2015 to
- \$36.70 billion in 2025.
- Over 1700 new digital startups
- (*Simulation modelling *Cloud-based IoT platform
- *Cognitive manufacturing
- *Contextual intelligence)

Manufacturing (including EVs) impacted by ongoing Digital Transformation

- Highly configurable and flexible production operated by robots
- Real-time production optimization through integration with simulation techniques
- Predictive analytics through pattern recognition methods
- Data packets enhanced encryption
- Automatic capturing, modelling, and optimizing of production systems

Industrial Internet of Things—The 4 Functional Facets

Industry Convergence: IT-OT

The cross-pollination of ideas, technologies, and processes between the worlds of information technology and operations technology will form the crux of the fourth industrial revolution.

Services 2.0

Supply Chain Evolution

The Industry 4.0 Business Ecosystem

Exploring newer avenues for service innovations, such as cloud-based service platforms, and evaluating potential for new profit centers; opportunity analysis for ICT technology in services

The dawn of the future factory is set to disrupt existing supply chain networks. Digitalization and increased connectivity are set to disrupt and realign existing value-chain networks in the future.

The advent of advanced ICT technologies will promote new interrelationships and interdependencies giving way to unexpected business collaborations and partnerships in the future.

IT-OT = Information Technology-operational Technology; ICT = Information and communication Technology Images Source: Thinkstock Source: Frost & Sullivan

FROST 🔗 SULLIVAN

IIoT—Key Attributes of a Smart Factory

The broader technology themes will give rise to new attributes in the shop floor.

(C) Frost & Sullivan, 2019

ABC Lightweighting Conference, 2019 (Detroit) de po SULLIVAN FROST

Example: Jeep Transforms its US Factory Realizing IloT

Kuka and Microsoft Supports Jeep help realize IIoT driven plant efficiency benefits at its Toledo factory.

Image sources are for reference only. Source: Frost & Sullivan

ABC Lightweighting Conference, 2019 (Detroit)

FROST & SULLIVAN

(C) Frost & Sullivan, 2019

Example: Toyota Operations Technology (OT) for Efficiency

Predictive maintenance tool has enabled Toyota's paint engineers to identify a problem within two hours, which typically would take eight weeks to spot.

Case Study: Toyota Operations Technology for Efficiency, Global

Tovota Operations Availability System (TOAD)

-In-house Data Visualization and Predictive Analytics Platform

ΤΟΥΟΤΑ

Existing & Future Strategy

- It currently augments the existing capacity by improving operational efficiency and working alternative shifts.
- It temporarily reduces the production cycle time by making
- In future, implement a new business strategy called the Advanced IT for Manufacturing across all the plants. Source: Toyota Motor Sales, U.S.A.; Frost & Sullivan

ABC Lightweighting Conference, 2019 (Detroit)

Operational Challenges

Very high production lead time.

Low level of flexibility, wherein multiple product types cannot move on a single line.

8

Example: Connected Supply Chain as a Means to Achieve Profitability

Performance Attribute	Metric	Estimated Reference Value	Improvement potential (%) with CSC	
Supply Chain Reliability	Perfect order fulfillment	75-85%	10-30% Improvement	Connected Supply Chain has the potential to reduce
Supply Chain Responsiveness	Order fulfillment cycle time	30- 45 days	30 - 50% Reduction	vehicle cost by up to
	Upside supply chain flexibility	45-60 days	30-50% Reduction	6% through
Supply Chain Flexibility	Upside supply chain adaptability			reduction in supply chain management cost and additional up
	Downside supply chain adaptability			
Supply Chain	Supply chain management cost	10-12% of Revenues	25% - 50% Reduction	to 10% reduction
Costs	Cost of goods sold	70-80% of revenues	5-10% improvement	to I U /0 reduction through savings in
	Cash-to-Cash cycle time	30-95 days	25-50% improvement	Cost of Goods Sold
Supply Chain Assets	Return on supply chain fixed assets		10 - 20% Improvement (based on capacity realization/ revenues)	using IIoT
Management	Return on working capital		25 - 50% Increase (based on C2C cycle time)	Source: Several and Frost & Sulliva

(C) Frost & Sullivan, 2019

ABC Lightweighting Conference, 2019 (Detroit)

Presentation Agenda

FROST & SULLIVAN

IIoT System Architecture

IIoT Different Layers

7 different layers

Layers Segmentation	Representation	Devices and Examples
Sensing Layer		Terminal Devices E.g., Sensors, camera, global positioning system (GPS)
Device Layer		Communication Terminals and Gateways E.g., Modem, Mobile Phone, Satellite Dish
Network Layer		System Networks E.g., Internet, local area network (LAN), multi-channel network (MCN)
Platform Layer		Database, File Storage E.g., Operation management, administration management, system management
Application Layer		Gateways, Firewalls, All End Devices like PCs, Phones, Servers E.g., Coal, electricity, transport
Terminal Layer		OpenCard Framework E.g., Human machine interface (HMI), computer panels
User Layer		Simple Mail Transfer Protocol (SMTP) E.g. Directory services
C) Frost & Sullivan, 2019		Source: Frost & Sullivan ABC Lightweighting Conference, 2019 (Detroit)

FROST & SULLIVAN

Exploring IIoT's End-to-End Industrial Architecture

The standardization of architecture will create a \$90 billion opportunity by 2021.

FROST

69

Exploring IIoT's End-to-End Industrial Architecture, Global, 2016–2021

ABC Lightweighting Conference, 2019 (Detroit) SULLIVAN

Example: Plant of the Future—Industry 4.0 Ecosystem

Industry 4.0 connects embedded system production technologies and manufacturing processes to drastically transform industry and production value chains and business models.

FROST 👉 SULLIVAN

Example: Bosch Analogy—A Smart Watch Solution

A Bosch plant, based in South Carolina, has successfully integrated iPhones and Pebble Watches into assembly lines.

Bosch Analogy—A Smart Watch Solution, Global

A Typical Production Floor

- Machine stoppages occur due to feeder jams and other specific faults, triggering the Buzzers
- Operator response time increases thereby resulting in increased wastage of time and money.

Key Convergence of Technology

(C) Frost & Sullivan, 2019

Robert Bosch's Anderson Plant

- The PLC communicates to server when a problem or jam is about to occur.
- The server interprets the signal and sends a SMS to iPhone.
- The iPhone relays message to all Pebbles (worn by line operators) via Bluetooth.
- For every 3 production days, 1 hour of downtime eliminated.
- This is 122 hours of additional production per year.

Inferred Strategy

- Engineering a strategy to integrate minimal technology with extended possibilities will reap huge benefits.
- Open firmware, like that of Pebble Smart watch, can help in customized implementation of its features in real-time production floor.
- Need for next-generation technology platform that spurs convergence concepts and simulations.

FROST 🕉 SULLIVAN

Automotive Industry Key Future Trends Overview

New opportunities in technologies and businesses have expanded the ecosystem of car manufactures to enhance their products and manufacturing process

Source: Frost & Sullivan

FROST 🔗 SULLIVAN

Electrification—Key to Meeting Future Emission Regulations

Electrifying ICE models is no longer an optimal solution to meet emission regulations because of the limitations in extending range and battery capacity; OEMs are expected to utilize their platforms for EVs.

EV Platform Strategy: OEM EV Platform Forecast, Global, 2016 and 2025

Key Takeaways

platforms that underpin EVs

(including PHEVs, BEVs,

and FCEVs) is expected

A 37.5% increase in

 The challenges with electrifying existing platforms include extending battery capacity and range, which are crucial to meeting emission regulations.

BMW's CLAR will underpin its future PHEVs, replacing its LG/LK and ULK-2 platforms

Note: All figures are rounded. The base year is 2016. Source: Frost & Sullivan

ABC Lightweighting Conference, 2019 (Detroit)

(C) Frost & Sullivan, 2019

FROST 🗭 SULLIVAN

Number of Platforms and Average Models per Platform

OEMs are expected to utilize 2 to 4 platforms to underpin future EVs, with an industry average of 5 to 6 models per platform by 2025.

New Dedicated Platforms—Powertrain Flexibility Comparison

With the exception of a few OEMs, many automakers are expected to build only BEVs on their dedicated platforms.

New Dedicated Platforms' Powertrain Flexibility Comparison, Global, 2016–2025

(C) Frost & Sullivan, 2019

SULLIVAN FROST Ó

Battery Specification Roadmap

The trend is moving towards higher battery capacities over 60kWh to increase the range of an electric vehicle up to 200 miles on a single charge.

Electric Vehicle Market : Battery Capacity and Range Roadmap, Global, 2010–2020

SULLIVAN

FROST

(C) Frost & Sullivan, 2019

ABC Lightweighting Conference, 2019 (Detroit)

Technology Roadmap by P – BTMS Solution

Flame barriers with epoxy and PCM materials will be the key trend in the future to adhere to the stringent battery thermal safety regulations such as GB/T regulations.

	2010	2015	2020		2025	
Heat Sink	Copper based foam- thermal fins			Aluminum fins-die casted base fins, liquid coolant tube and plate		
	Liquid glycol cooled alum	ninum heat sink liquid cold pla	Al alloy base with p	hase change material		
Heat Spreader	copper-molybdenum (Cu-Mo) AlSiC , MgSiC- Adhesives & Plates Cold plate lined w					
	Aluminum Foil, Copper Foil, Polyester, Synthetic Graphite Cold plates with liquid coolant and polyester coating					
Flame Barrier	Composites/Ceramic ins plates	Glass epox	Glass epoxy, reinforced glass polymer, Polyamide films, thermo foams & sheets Glass polyamide, glass epoxy and PCM Materials.			
	Barrier insulator					
Thermal Conduction		Plastic polymers, f graphite alloy	oam, copper	Copper foil coated wi based material	th a mixture of carbon-	
Thermal Insulation		Polyvinyl Chlorid Polyethylene Ter		Metal alloy and inorga	nic sodium acetate	
			Calcium Silicate, pyrotechnic materials, fiberglass battery separator, foam, ceramic foam, synthetic graphite			
(C) Frost & Su	-			ABC Lightweighting	Source: Frost & S	

Key Question Remains - How to achieve Profitability

Managing Manufacturing Complexity becomes Key

(C) Frost & Sullivan, 2019

FROST 🕉 SULLIVAN

Presentation Agenda

Example: BMW Smart Factory Technologies—Implementation

Collaborative robots (cobots), wearables, augmented realty applications, smart glasses, exoskeletons, and innovative work gloves are the key technologies that are being integrated at BMW's global plants.

BMW workers using exoskeleton devices

BMW factory (Leipzig,Germany) robot applies adhesive to window

~ 60 lightweight robots in BMW group plants

230 innovative work gloves at the BMW Group

~ 68 exoskeleton vests in use in the series production at Spartanburg BMW plant

BMW worker uses smart gloves to scan items in warehouse

Augmented realty applications on smart devices such as tablet computers

ABC Lightweighting Conference, 2019 (Detroit)

FROST 🕉 SULLIVAN

Source: Frost & Sullivan

Image Source: BMW (C) Frost & Sullivan, 2019

Example: Popular EV Model Cost Breakdown Profitability Analysis

Source: Frost & Sullivan

ABC Lightweighting Conference, 2019 (Detroit)

FROST 🕉 SULLIVAN

Thank you Q&A

FROST & SULLIVAN

Vishwas Shankar Research Manager Automotive & Transportation vishwass@frost.com

(C) Frost & Sullivan, 2019

FROST 🕉 SULLIVAN