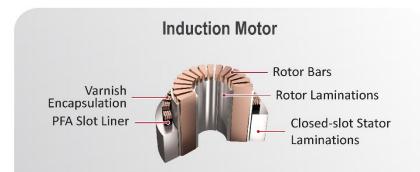


Permanent Magnet Motors for ESP Applications – Updating the Track Record of Performance

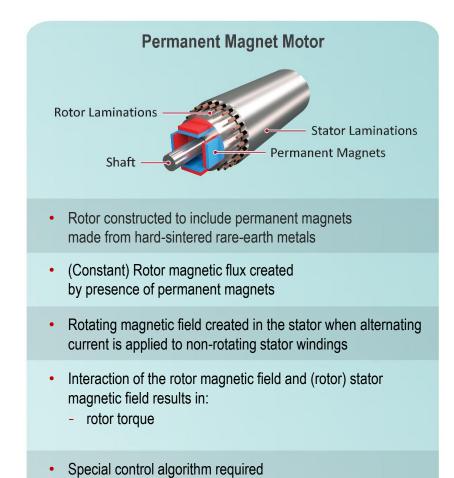
Lorne Simmons – VP Sales & Marketing

Technology Development – Milestones and Achievements

- Late 1990s Permanent Magnet Motor (PMM) technology development (for ESP application) initiated by Borets.
- 2005 First PMM field installation.
- 2006 First PMM (462 Series) commercialized.
- 2009 406 Series PMM commercialized.
- Since 2010
 - Higher horsepower PMMs through enhanced rotor bearing technology
 - Expanded PMM series released
 - High and low-speed PMMs released.
- 2011 Extensive development and release of first proprietary PMM control algorithm in dual compatible (IM & PMM) surface variable frequency drive.
- 2015 Release of second generation (dual compatible) PMM surface drive.
- 2015 State-of-art PMM testing facility opened in Tulsa, Oklahoma.
- 2018 Borets installs it 250th PMM in the Permian Basin.



Induction Motor vs Permanent Magnet Motor


BORETS

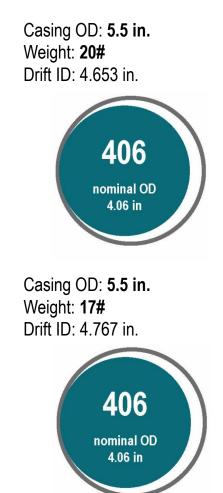
Traditional downhole ESP motors used are threephase, two-pole, squirrel-cage AC induction motors.


- Rotor constructed using copper bars short-circuited by two copper end rings
- Rotor magnetic field is generated by current induced in the (rotor) copper bars
- Rotating magnetic field created in the stator when alternating current is applied to non-rotating stator windings
- Interaction of the rotor magnetic field and (rotating) stator magnetic field results in:
 - rotor torque
 - slip
- No special VSD control algorithm required

The downhole PMM for ESP application introduced to the industry in 2006.

Standard Performance Curves – 456 Series IM vs 456 Series PMM

At BEP, PM motors are 7 - 10% more efficient than the equivalent IM.


Induction Motor		Permanent Magnet Motor
180	Motor power (hp)	180
18	Number of Rotors	9
24.5	Length (ft)	14
88	Max. Efficiency (%) @ 60 Hz	93

456 Series IM vs Equivalent 406 Series PMM Comparison

Casing OD: 5.5 in. Weight: 20# Drift ID: 4.653 in. 180 hp 180 hp 24.5 ft 20 ft Casing OD: 5.5 in. Weight: 17# Drift ID: 4.767 in. 456 nominal OD 4.56 in

456 Series IM

406 Series PMM

Current PMM Portfolio

PMM Motor Series								
 Commercial products Under development 	319	375	40	6	456	512	562	728
Standard Speed (3,600 rpm – 4 pole)	_	✓	~		✓	✓	\checkmark	✓
High Speed (6,000 rpm – 4 pole)	✓	TBD	~		✓	✓	~	TBD
Low Speed (500 rpm – 10 pole)	_	-	-		✓	-	~	-
Power Factor	0.96	0.96	0.96	;	0.96	0.96	0.96	0.96
Max. Efficiency, %	up to 93	up to 93	up to s	93	up to 93	up to 93	up to 93	up to 93
Rated Winding Temp, °C	200	200	200		200	200	200	200
# Motor Sizes Available	17	TBD	18*		16*	18*	18*	TBD
Min. Power (hp)	24	TBD	24*		40*	80*	100*	TBD
Max. Power (hp)	150	150*	228* (264)*	400*	760*	980*	1500*
HP / Rotor	8	TBD	12*		20*	40*	50*	TBD

* For Standard Speed Motors

Realizing the Advantages of PMMs – Drives Matter

- 7 10% increase in motor efficiency at rated power Reduced power consumption (up to 20%)
- 10 15% lower operating current
 Reduced motor heat rise improves equipment and system reliability
- Higher rotor HP density
 Up to 40% reduction in motor length
- Wider operating range
- Improved adaptive control
- Soft start capability

BORETS

Advantages of PMMs are realized when operated as part of a "tuned" drive-downhole motor system.

Comparison of Different PMM Control Methods

BORETS

Back-EMF control ✓	Scalar control ✓✓	Vector control $\checkmark \checkmark \checkmark$
 Only two of three phases conduct current at any one time Beter position detected by back EME 	 Inverter circuit ensures sinusoidal phase voltages and currents Voltage agrees the mater is a function 	 Advanced process running complex algorithm
 Rotor position detected by back-EMF induced in (idle) third phase as motor rotates at any time. 	 Voltage across the motor is a function of pre-set speed (U/F control) Advantages: 	 Resolves rotating phase vectors Results in precision control of flux (magnetizing) and torque producing
Advantages:Independence from motor parameters	 Overcomes limitations associated with back-EMF method 	currents. Voltage to the motor is applied based on:
 Simplicity - requires only step-up transformer and long power cable. 	 Optimized performance for static motor loads 	Motor inductance vector valuesPermanent magnet flux linkage
Limitations:	Limitations:	 Active resistance of the phase windings
 Cable length, motor inductance and speed yield fluctuations in zero current phase resulting in failure to locate rotor position. 	 Drive performance NOT optimized across entire (or variable) range of motor speeds and loads. 	AmperageMotor design characteristics
- reduced efficiency	 sub-optimal efficiency across variable motor loads 	 Advantage: Performance and energy efficiency of the VSD/motor system is continually optimized across all speeds and loads.

The vector control method consistently delivers exceptional efficiency and lower heat rise as compared to the other methods of PMM control.

Case Example #1: Induction vs Permanent Magnet Motor Comparison Test – Howard County, Texas

Test Objective:

Prove / disprove energy savings using PMM technology

Well

• TD: 7,725 ft

- Casing OD: 5.5 in.
- TVD: 7,599 ft
- Casing weight: 17# / ft
- Completed: April 2010 Pump setting depth: 6,000 ft

Equipment Used in Test

- Induction Motor (IM): 456 Series, 240 hp, 2x1,295 V, 59 A tandem motor
- Permanent Magnet Motor (PMM): 117 mm, 266 hp, 2466 V, 62 A motor
- Variable Frequency Drive (VFD): Borets-VD250-300 Current Source Drive
- ESP Cable: 6,000' #4 AWG SL-450 Lead Flat
- Motor Seals: 400 Series Tandem
- Pumps: 400 Series, 3,000 bpd (285 stages, 3 sections)
- Intake pressure measurement:
 Borets Viewpoint ESP downhole sensor

Test 1: measure power consumption maintaining constant (surface) flow rate

Flow Rate (BPD)	IM (kW)	PMM (kW)	Delta	Delta (%)
2400	167.3	132.9	34.4	4 20.6
3000	203.4	161.0	42.4	4 20.8
3400	224.8	204.3	20.5	4 9.1

Test 2: measure power consumption maintaining constant intake pressure

		Frequency (Hz)	Pump Intake (psi)	Motor Load (%)	Motor Winding Temp (°F)	Motor Efficiency (%)	Power Consumed – Meter (kW-Hr)	% Savings (kW-Hr)
	IM	55.8	601	67	182	80.4	161.8	-
		61.6	545	83	187	82.9	211.3	-
		65.9	505	97	192	84	245	-
		52.7	603	63	186	90.8	133.3	4 17.6
	PMM	57.5	545	78	199	91.1	177	4 16.2
		60.5	505	89	210	90.7	210.9	4 13.9

Case Example #2: Induction vs Permanent Magnet Motor Comparison Test – Ector County, Texas

BORETS

Test Objective:

Compare IM vs PMM technology to evaluate power consumption results against manufacturer claims and lab test results

Well

- TD: 4,690 ft; TVD: 4,690 ft
- Completed: 1975
- Casing OD: 5.5 in.
- Casing weight: 14# / ft
- Pump setting depth: 4,305 ft

Equipment Used in Test

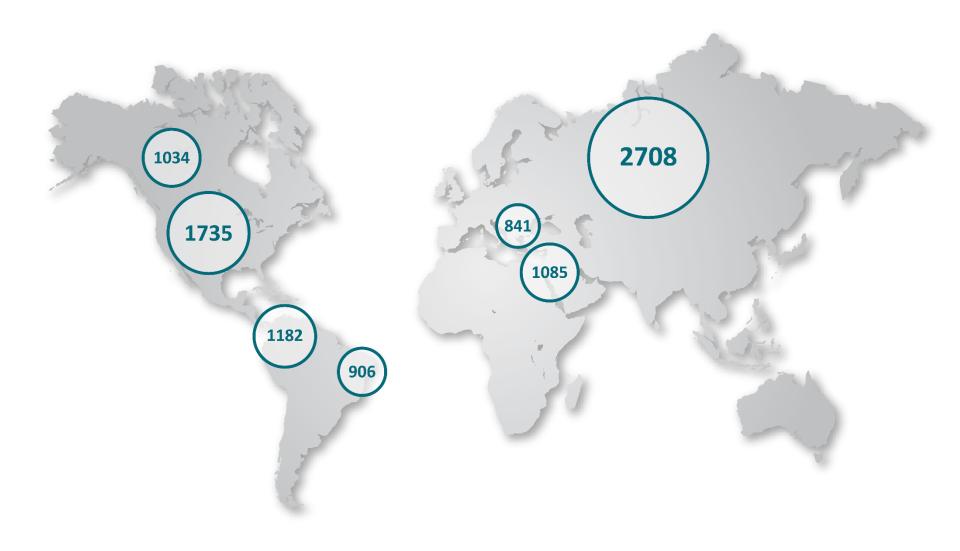
- Permanent Magnet Motor (PMM): Borets 456 Series, 60 hp, 1,022 V, 35 A motor
- Variable Frequency Drive (VFD): Borets Axiom II, 125 kVA, 150 A
- Motor Seals: Borets 400 Series Tandem
- Intake pressure measurement:
 Borets Viewpoint ESP downhole sensor
- Induction Motor (IM): 456 Series, 60 hp
- Pumps and ESP Cable: 3rd party provided

Test conducted in three stages:

- 1. ESP system (IMs) operated on switchboard at 60 Hz
- 2. ESP system (IMs) operated on VFD
- 3. ESP system (PMM) operated on VFD

The same surface drive, cable used in stages 2 and 3. New downhole motor and seals installed.

		Frequency (rpm)	Pump Intake (psi)	Motor Load (%)	Motor Winding Temp (°F)	Flow Rate (BFPD)	Power Consumption (kW)	Change in Power Consumption (%)
	IM	2900	610	72	U/A	520	31.0	
		3200	275	77		557	37.4	
		3450	80	79		737	44.1	
	PMM	2900	620	51	127	650	25.0	🖊 19
		3200	355	61	135	770	32.7	4 13
		3450	125	63	135	830	38.5	4 13


Global PMM Experience – PMMs Currently Operating

BORETS

(LODEL)

Global PMM Experience – Maximum Run Days Achieved

Physical design characteristics of PMMs contribute to:

- Reduced energy consumption, even under variable / reduced load conditions
- Improved reliability reduced electrical losses lower heat rise during operation contributes to longer equipment run life
- Increased power density more HP per rotor **shorter overall equipment length**.

The type of motor control method used by the surface VSD is critical to realizing maximum benefit of PMMs

- Not all PMM surface drive control algorithms are equal
- Vector control optimizes PMM control taking into account the design characteristics of the downhole motor.

The benefits of reduced energy consumption and lower heat rise during operation are being realized by operators in the Permian Basin.

Questions?

(LODEL)

